Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package was automatically created by package matchprobes version 1.4.0. The probe sequence data was obtained from http://www.affymetrix.com.
In a typical microarray setting with gene expression data observed under two conditions, the local false discovery rate describes the probability that a gene is not differentially expressed between the two conditions given its corrresponding observed score or p-value level. The resulting curve of p-values versus local false discovery rate offers an insight into the twilight zone between clear differential and clear non-differential gene expression. Package twilight contains two main functions: Function twilight.pval performs a two-condition test on differences in means for a given input matrix or expression set and computes permutation based p-values. Function twilight performs a stochastic downhill search to estimate local false discovery rates and effect size distributions. The package further provides means to filter for permutations that describe the null distribution correctly. Using filtered permutations, the influence of hidden confounders could be diminished.
This package provides methods to create complex IGV genome browser sessions and dynamic IGV reports in HTML pages.
This package automates analysis workflow for Thermal Shift Analysis (TSA) data. Processing, analyzing, and visualizing data through both shiny applications and command lines. Package aims to simplify data analysis and offer front to end workflow, from raw data to multiple trial analysis.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
tidySpatialExperiment provides a bridge between the SpatialExperiment package and the tidyverse ecosystem. It creates an invisible layer that allows you to interact with a SpatialExperiment object as if it were a tibble; enabling the use of functions from dplyr, tidyr, ggplot2 and plotly. But, underneath, your data remains a SpatialExperiment object.
TimeScape is an automated tool for navigating temporal clonal evolution data. The key attributes of this implementation involve the enumeration of clones, their evolutionary relationships and their shifting dynamics over time. TimeScape requires two inputs: (i) the clonal phylogeny and (ii) the clonal prevalences. Optionally, TimeScape accepts a data table of targeted mutations observed in each clone and their allele prevalences over time. The output is the TimeScape plot showing clonal prevalence vertically, time horizontally, and the plot height optionally encoding tumour volume during tumour-shrinking events. At each sampling time point (denoted by a faint white line), the height of each clone accurately reflects its proportionate prevalence. These prevalences form the anchors for bezier curves that visually represent the dynamic transitions between time points.
Leverage the existing open access TCGA data on Terra with well-established Bioconductor infrastructure. Make use of the Terra data model without learning its complexities. With a few functions, you can copy / download and generate a MultiAssayExperiment from the TCGA example workspaces provided by Terra.
The goal of `tpSVG` is to detect and visualize spatial variation in the gene expression for spatially resolved transcriptomics data analysis. Specifically, `tpSVG` introduces a family of count-based models, with generalizable parametric assumptions such as Poisson distribution or negative binomial distribution. In addition, comparing to currently available count-based model for spatially resolved data analysis, the `tpSVG` models improves computational time, and hence greatly improves the applicability of count-based models in SRT data analysis.
Differential expression analysis of RNA-seq using the Poisson-Tweedie (PT) family of distributions. PT distributions are described by a mean, a dispersion and a shape parameter and include Poisson and NB distributions, among others, as particular cases. An important feature of this family is that, while the Negative Binomial (NB) distribution only allows a quadratic mean-variance relationship, the PT distributions generalizes this relationship to any orde.
The TreeAndLeaf package combines unrooted and force-directed graph algorithms in order to layout binary trees, aiming to represent multiple layers of information onto dendrogram leaves.
`tidyCoverage` framework enables tidy manipulation of collections of genomic tracks and features using `tidySummarizedExperiment` methods. It facilitates the extraction, aggregation and visualization of genomic coverage over individual or thousands of genomic loci, relying on `CoverageExperiment` and `AggregatedCoverage` classes. This accelerates the integration of genomic track data in genomic analysis workflows.
Exposes an annotation databases generated from BioMart by exposing these as TxDb objects.
TTMap is a clustering method that groups together samples with the same deviation in comparison to a control group. It is specially useful when the data is small. It is parameter free.
Functional enrichment analysis methods such as gene set enrichment analysis (GSEA) have been widely used for analyzing gene expression data. GSEA is a powerful method to infer results of gene expression data at a level of gene sets by calculating enrichment scores for predefined sets of genes. GSEA depends on the availability and accuracy of gene sets. There are overlaps between terms of gene sets or categories because multiple terms may exist for a single biological process, and it can thus lead to redundancy within enriched terms. In other words, the sets of related terms are overlapping. Using deep learning, this pakage is aimed to predict enrichment scores for unique tokens or words from text in names of gene sets to resolve this overlapping set issue. Furthermore, we can coin a new term by combining tokens and find its enrichment score by predicting such a combined tokens.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
This package provides a R interface to the TnT javascript library (https://github.com/ tntvis) to provide interactive and flexible visualization of track-based genomic data.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Perform ontological exploration of scRNA-seq of 1.3 million mouse neurons from 10x genomics.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
The TissueEnrich package is used to calculate enrichment of tissue-specific genes in a set of input genes. For example, the user can input the most highly expressed genes from RNA-Seq data, or gene co-expression modules to determine which tissue-specific genes are enriched in those datasets. Tissue-specific genes were defined by processing RNA-Seq data from the Human Protein Atlas (HPA) (Uhlén et al. 2015), GTEx (Ardlie et al. 2015), and mouse ENCODE (Shen et al. 2012) using the algorithm from the HPA (Uhlén et al. 2015).The hypergeometric test is being used to determine if the tissue-specific genes are enriched among the input genes. Along with tissue-specific gene enrichment, the TissueEnrich package can also be used to define tissue-specific genes from expression datasets provided by the user, which can then be used to calculate tissue-specific gene enrichments.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Quantitative and differential analysis of epigenomic and transcriptomic time course sequencing data, clustering analysis and visualization of the temporal patterns of time course data.
The TMSig package contains tools to prepare, analyze, and visualize named lists of sets, with an emphasis on molecular signatures (such as gene or kinase sets). It includes fast, memory efficient functions to construct sparse incidence and similarity matrices and filter, cluster, invert, and decompose sets. Additionally, bubble heatmaps can be created to visualize the results of any differential or molecular signatures analysis.