Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for the calculation of common biodiversity indices from count data. Additionally, it incorporates bootstrapping techniques to generate multiple samples, facilitating the estimation of confidence intervals around these indices. Furthermore, the package allows for the exploration of how variation in these indices changes with differing numbers of sites, making it a useful tool with which to begin an ecological analysis. Methods are based on the following references: Chao et al. (2014) <doi:10.1890/13-0133.1>, Chao and Colwell (2022) <doi:10.1002/9781119902911.ch2>, Hsieh, Ma,` and Chao (2016) <doi:10.1111/2041-210X.12613>.
This package provides functions to implement a Hwang(2021) <doi:10.2139/ssrn.3866876> estimator, which bounds an omitted variable bias using auxiliary data.
Generates bivariate residual plots with simulation polygons for any diagnostics and bivariate model from which functions to extract the desired diagnostics, simulate new data and refit the models are available.
This package provides a fast, lightweight, and vectorized base 64 engine to encode and decode character and raw vectors as well as files stored on disk. Common base 64 alphabets are supported out of the box including the standard, URL-safe, bcrypt, crypt, BinHex', and IMAP-modified UTF-7 alphabets. Custom engines can be created to support unique base 64 encoding and decoding needs.
Bindings for additional tree-based model engines for use with the parsnip package. Models include gradient boosted decision trees with LightGBM (Ke et al, 2017.), conditional inference trees and conditional random forests with partykit (Hothorn and Zeileis, 2015. and Hothorn et al, 2006. <doi:10.1198/106186006X133933>), and accelerated oblique random forests with aorsf (Jaeger et al, 2022 <doi:10.5281/zenodo.7116854>).
This package provides methods to estimate optimal dynamic treatment regimes using Bayesian likelihood-based regression approach as described in Yu, W., & Bondell, H. D. (2023) <doi:10.1093/jrsssb/qkad016> Uses backward induction and dynamic programming theory for computing expected values. Offers options for future parallel computing.
The Biodem package provides a number of functions for Biodemographic analysis.
This package performs Bayesian estimation of the additive main effects and multiplicative interaction (AMMI) model. The method is explained in Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G. and Cornelius, P.L. (2011) (<doi:10.2135/cropsci2010.06.0343>).
Network meta-analyses using Bayesian framework following Dias et al. (2013) <DOI:10.1177/0272989X12458724>. Based on the data input, creates prior, model file, and initial values needed to run models in rjags'. Able to handle binomial, normal and multinomial arm-level data. Can handle multi-arm trials and includes methods to incorporate covariate and baseline risk effects. Includes standard diagnostics and visualization tools to evaluate the results.
This package provides a collection of Bayesian networks (discrete, Gaussian, and conditional linear Gaussian) collated from recent academic literature. The bnRep_summary object provides an overview of the Bayesian networks in the repository and the package documentation includes details about the variables in each network. A Shiny app to explore the repository can be launched with bnRep_app() and is available online at <https://manueleleonelli.shinyapps.io/bnRep>. Reference: M. Leonelli (2025) <doi:10.1016/j.neucom.2025.129502>.
Algorithms developed for binned data analysis, gene expression data analysis and measurement error models for ordinal data analysis.
Fits linear or generalized linear regression models using Bayesian global-local shrinkage prior hierarchies as described in Polson and Scott (2010) <doi:10.1093/acprof:oso/9780199694587.003.0017>. Provides an efficient implementation of ridge, lasso, horseshoe and horseshoe+ regression with logistic, Gaussian, Laplace, Student-t, Poisson or geometric distributed targets using the algorithms summarized in Makalic and Schmidt (2016) <doi:10.48550/arXiv.1611.06649>.
This package provides various basis expansions for flexible regression modeling, including random Fourier features (Rahimi & Recht, 2007) <https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf>, exact kernel / Gaussian process feature maps, Bayesian Additive Regression Trees (BART) (Chipman et al., 2010) <doi:10.1214/09-AOAS285> prior features, and a helpful interface for n-way interactions. The provided functions may be used within any modeling formula, allowing the use of kernel methods and other basis expansions in modeling functions that do not otherwise support them. Along with the basis expansions, a number of kernel functions are also provided, which support kernel arithmetic to form new kernels. Basic ridge regression functionality is included as well.
Computation of bootstrap p-values through inversion of confidence intervals, including convenience functions for regression models and tests of location.
Binomial Haar-Fisz transforms for Gaussianization as in Nunes and Nason (2009).
Interface to a high-performance implementation of k-medoids clustering described in Tiwari, Zhang, Mayclin, Thrun, Piech and Shomorony (2020) "BanditPAM: Almost Linear Time k-medoids Clustering via Multi-Armed Bandits" <https://proceedings.neurips.cc/paper/2020/file/73b817090081cef1bca77232f4532c5d-Paper.pdf>.
This package provides a suite of functions for finance, including the estimation of variance matrices via a statistical factor model or Ledoit-Wolf shrinkage.
Simultaneously clusters the Periodontal diseases (PD) patients and their tooth sites after taking the patient- and site-level covariates into consideration. BAREB uses the determinantal point process (DPP) prior to induce diversity among different biclusters to facilitate parsimony and interpretability. Essentially, BAREB is a cluster-wise linear model based on Yuliang (2020) <doi:10.1002/sim.8536>.
This R package offers block Gibbs samplers for the Bayesian (adaptive) graphical lasso, ridge, and naive elastic net priors. These samplers facilitate the simulation of the posterior distribution of precision matrices for Gaussian distributed data and were originally proposed by: Wang (2012) <doi:10.1214/12-BA729>; Smith et al. (2022) <doi:10.48550/arXiv.2210.16290> and Smith et al. (2023) <doi:10.48550/arXiv.2306.14199>, respectively.
Classical Boson Sampling using the algorithm of Clifford and Clifford (2017) <arXiv:1706.01260>. Also provides functions for generating random unitary matrices, evaluation of matrix permanents (both real and complex) and evaluation of complex permanent minors.
Implementation of the BC3NET algorithm for gene regulatory network inference (de Matos Simoes and Frank Emmert-Streib, Bagging Statistical Network Inference from Large-Scale Gene Expression Data, PLoS ONE 7(3): e33624, <doi:10.1371/journal.pone.0033624>).
Jointly models the multivariate longitudinal responses and multiple covariates and time using gradient boosting approach.
Survey systems and other third-party data sources commonly use non-standard representations of logical values when it comes to qualitative data - "Yes", "No" and "N/A", say. batman is a package designed to seamlessly convert these into logicals. It is highly localised, and contains equivalents to boolean values in languages including German, French, Spanish, Italian, Turkish, Chinese and Polish.
This package provides functions to allow you to easily pass command-line arguments into R, and functions to aid in submitting your R code in parallel on a cluster and joining the results afterward (e.g. multiple parameter values for simulations running in parallel, splitting up a permutation test in parallel, etc.). See `parseCommandArgs(...) for the main example of how to use this package.