Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The BAGofT assesses the goodness-of-fit of binary classifiers. Details can be found in Zhang, Ding and Yang (2021) <arXiv:1911.03063v2>.
This package performs Bayesian variable screening and selection for ultra-high dimensional linear regression models.
Estimates Boltzmannâ Lotkaâ Volterra (BLV) interaction model efficiently. Enables programmatic and graphical exploration of the solution space of BLV models when parameters are varied. See Wilson, A. (2008) <dx.doi.org/10.1098/rsif.2007.1288>.
This package contains functions for evaluating, analyzing, and fitting combined action dose response surfaces with the Bivariate Response to Additive Interacting Doses (BRAID) model of combined action, along with tools for implementing other combination analysis methods, including Bliss independence, combination index, and additional response surface methods.
Datasets and functions for the book "Initiation à la Statistique avec R", F. Bertrand and M. Maumy-Bertrand (2022, ISBN:978-2100782826 Dunod, fourth edition).
This package provides functions for data augmentation using the Bayesian discount prior method for single arm and two-arm clinical trials, as described in Haddad et al. (2017) <doi:10.1080/10543406.2017.1300907>. The discount power prior methodology was developed in collaboration with the The Medical Device Innovation Consortium (MDIC) Computer Modeling & Simulation Working Group.
This package provides functions to compute the joint probability mass function (pmf), cumulative distribution function (cdf), and survival function (sf) of the Basu-Dhar bivariate geometric distribution. Additional functionalities include the calculation of the correlation coefficient, covariance, and cross-factorial moments, as well as the generation of random variates. The package also implements parameter estimation based on the method of moments.
Create a blended curve from two survival curves, which is particularly useful for survival extrapolation in health technology assessment. The main idea is to mix a flexible model that fits the observed data well with a parametric model that encodes assumptions about long-term survival. The two curves are blended into a single survival curve that is identical to the first model over the range of observed times and gradually approaches the parametric model over the extrapolation period based on a given weight function. This approach allows for the inclusion of external information, such as data from registries or expert opinion, to guide long-term extrapolations, especially when dealing with immature trial data. See Che et al. (2022) <doi:10.1177/0272989X221134545>.
The goal of BayesPower is to provide tools for Bayesian sample size determination and power analysis across a range of common hypothesis testing scenarios using Bayes factors. The main function, BayesPower_BayesFactor(), launches an interactive shiny application for performing these analyses. The application also provides command-line code for reproducibility. Details of the methods are described in the tutorial by Wong, Pawel, and Tendeiro (2025) <doi:10.31234/osf.io/pgdac_v1>.
This package provides methods for choosing the rank of an SVD (singular value decomposition) approximation via cross validation. The package provides both Gabriel-style "block" holdouts and Wold-style "speckled" holdouts. It also includes an implementation of the SVDImpute algorithm. For more information about Bi-cross-validation, see Owen & Perry's 2009 AoAS article (at <arXiv:0908.2062>) and Perry's 2009 PhD thesis (at <arXiv:0909.3052>).
Allows to view the optimal probability cut-off point at which the Sensitivity and Specificity meets and its a best way to minimize both Type-1 and Type-2 error for a binary Classifier in determining the Probability threshold.
Investigating and visualising Bayesian Additive Regression Tree (BART) (Chipman, H. A., George, E. I., & McCulloch, R. E. 2010) <doi:10.1214/09-AOAS285> model fits. We construct conventional plots to analyze a modelâ s performance and stability as well as create new tree-based plots to analyze variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our visualisations are designed to work with the most popular BART R packages available, namely BART Rodney Sparapani and Charles Spanbauer and Robert McCulloch 2021 <doi:10.18637/jss.v097.i01>, dbarts (Vincent Dorie 2023) <https://CRAN.R-project.org/package=dbarts>, and bartMachine (Adam Kapelner and Justin Bleich 2016) <doi:10.18637/jss.v070.i04>.
Estimation of Bayesian Global Vector Autoregressions (BGVAR) with different prior setups and the possibility to introduce stochastic volatility. Built-in priors include the Minnesota, the stochastic search variable selection and Normal-Gamma (NG) prior. For a reference see also Crespo Cuaresma, J., Feldkircher, M. and F. Huber (2016) "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach", Journal of Applied Econometrics, Vol. 31(7), pp. 1371-1391 <doi:10.1002/jae.2504>. Post-processing functions allow for doing predictions, structurally identify the model with short-run or sign-restrictions and compute impulse response functions, historical decompositions and forecast error variance decompositions. Plotting functions are also available. The package has a companion paper: Boeck, M., Feldkircher, M. and F. Huber (2022) "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R", Journal of Statistical Software, Vol. 104(9), pp. 1-28 <doi:10.18637/jss.v104.i09>.
We perform linear, logistic, and cox regression using the base functions lm(), glm(), and coxph() in the R software and the survival package. Likewise, we can use ols(), lrm() and cph() from the rms package for the same functionality. Each of these two sets of commands has a different focus. In many cases, we need to use both sets of commands in the same situation, e.g. we need to filter the full subset model using AIC, and we need to build a visualization graph for the final model. base.rms package can help you to switch between the two sets of commands easily.
Includes algorithms to assess alpha and beta diversity in all their dimensions (taxonomic, phylogenetic and functional). It allows performing a number of analyses based on species identities/abundances, phylogenetic/functional distances, trees, convex-hulls or kernel density n-dimensional hypervolumes depicting species relationships. Cardoso et al. (2015) <doi:10.1111/2041-210X.12310>.
Density, distribution function, quantile function random generation and estimation of bimodal GEV distribution given in Otiniano et al. (2023) <doi:10.1007/s10651-023-00566-7>. This new generalization of the well-known GEV (Generalized Extreme Value) distribution is useful for modeling heterogeneous bimodal data from different areas.
Provide a sparse matrix format with data stored on disk, to be used in both R and C++. This is intended for more efficient use of sparse data in C++ and also when parallelizing, since data on disk does not need copying. Only a limited number of features will be implemented. For now, conversion can be performed from a dgCMatrix or a dsCMatrix from R package Matrix'. A new compact format is also now available.
Implementation of the bootstrapping approach for the estimation of clustering stability and its application in estimating the number of clusters, as introduced by Yu et al (2016)<doi:10.1142/9789814749411_0007>. Implementation of the non-parametric bootstrap approach to assessing the stability of module detection in a graph, the extension for the selection of a parameter set that defines a graph from data in a way that optimizes stability and the corresponding visualization functions, as introduced by Tian et al (2021) <doi:10.1002/sam.11495>. Implemented out-of-bag stability estimation function and k-select Smin-based k-selection function as introduced by Liu et al (2022) <doi:10.1002/sam.11593>. Implemented ensemble clustering method based-on k-means clustering method, spectral clustering method and hierarchical clustering method.
Standard template library containers are used to implement an efficient binary segmentation algorithm, which is log-linear on average and quadratic in the worst case.
This package provides a box compatible custom language parser for the languageserver package to provide completion and signature hints in code editors.
Estimate fish length-at-age models using MCMC analysis with rstan models. This package allows a multimodel approach to growth fitting to be applied to length-at-age data and is supported by further analyses to determine model selection and result presentation. The core methods of this package are presented in Smart and Grammer (2021) "Modernising fish and shark growth curves with Bayesian length-at-age models". PLOS ONE 16(2): e0246734 <doi:10.1371/journal.pone.0246734>.
Determines effective sample size of a parametric prior distribution in Bayesian models. For a web-based Shiny application related to this package, see <https://implement.shinyapps.io/bayesess/>.
This package provides numerous utilities for acquiring and analyzing baseball data from online sources such as Baseball Reference <https://www.baseball-reference.com/>, FanGraphs <https://www.fangraphs.com/>, and the MLB Stats API <https://www.mlb.com/>.
This package performs block diagonal covariance matrix detection using singular vectors (BD-SVD), which can be extended to hierarchical variable clustering (HC-SVD). The methods are described in Bauer (2024) <doi:10.1080/10618600.2024.2422985> and Bauer (202X) <doi:10.48550/arXiv.2308.06820>.