_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-ils 0.3
Propagated dependencies: r-multcomp@1.4-26 r-mass@7.3-61 r-lattice@0.22-6 r-fda-usc@2.2.0 r-depthtools@0.7
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/mflores72000/ILS/
Licenses: GPL 2+
Synopsis: Interlaboratory Study
Description:

It performs interlaboratory studies (ILS) to detect those laboratories that provide non-consistent results when comparing to others. It permits to work simultaneously with various testing materials, from standard univariate, and functional data analysis (FDA) perspectives. The univariate approach based on ASTM E691-08 consist of estimating the Mandel's h and k statistics to identify those laboratories that provide more significant different results, testing also the presence of outliers by Cochran and Grubbs tests, Analysis of variance (ANOVA) techniques are provided (F and Tuckey tests) to test differences in means corresponding to different laboratories per each material. Taking into account the functional nature of data retrieved in analytical chemistry, applied physics and engineering (spectra, thermograms, etc.). ILS package provides a FDA approach for finding the Mandel's k and h statistics distribution by smoothing bootstrap resampling.

r-ldm 6.0.1
Propagated dependencies: r-vegan@2.6-8 r-phangorn@2.12.1 r-permute@0.9-7 r-modeest@2.4.0 r-matrixstats@1.4.1 r-gunifrac@1.8 r-castor@1.8.2 r-biocparallel@1.40.0
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/yijuanhu/LDM
Licenses: GPL 2+
Synopsis: Testing Hypotheses About the Microbiome using the Linear Decomposition Model
Description:

This package provides a single analysis path that includes distance-based ordination, global tests of any effect of the microbiome, and tests of the effects of individual taxa with false-discovery-rate (FDR) control. It accommodates both continuous and discrete covariates as well as interaction terms to be tested either singly or in combination, allows for adjustment of confounding covariates, and uses permutation-based p-values that can control for sample correlations. It can be applied to transformed data, and an omnibus test can combine results from analyses conducted on different transformation scales. It can also be used for testing presence-absence associations based on infinite number of rarefaction replicates, testing mediation effects of the microbiome, analyzing censored time-to-event outcomes, and for compositional analysis by fitting linear models to centered-log-ratio taxa count data.

r-ote 1.0.1
Propagated dependencies: r-randomforest@4.7-1.2
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=OTE
Licenses: GPL 3+
Synopsis: Optimal Trees Ensembles for Regression, Classification and Class Membership Probability Estimation
Description:

This package provides functions for creating ensembles of optimal trees for regression, classification (Khan, Z., Gul, A., Perperoglou, A., Miftahuddin, M., Mahmoud, O., Adler, W., & Lausen, B. (2019). (2019) <doi:10.1007/s11634-019-00364-9>) and class membership probability estimation (Khan, Z, Gul, A, Mahmoud, O, Miftahuddin, M, Perperoglou, A, Adler, W & Lausen, B (2016) <doi:10.1007/978-3-319-25226-1_34>) are given. A few trees are selected from an initial set of trees grown by random forest for the ensemble on the basis of their individual and collective performance. Three different methods of tree selection for the case of classification are given. The prediction functions return estimates of the test responses and their class membership probabilities. Unexplained variations, error rates, confusion matrix, Brier scores, etc. are also returned for the test data.

r-nma 1.4-3
Propagated dependencies: r-stringr@1.5.1 r-metafor@4.6-0 r-mass@7.3-61 r-ggplot2@3.5.1 r-forestplot@3.1.5
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://www.ism.ac.jp/~noma/file/software/NMA.r
Licenses: GPL 3
Synopsis: Network Meta-Analysis Based on Multivariate Meta-Analysis Models
Description:

Network meta-analysis tools based on contrast-based approach using the multivariate meta-analysis and meta-regression models (Noma et al. (2023) <Forthcoming>). Standard analysis tools for network meta-analysis and meta-regression (e.g., synthesis analysis, ranking analysis, and creating league table) are available by simple commands. For inconsistency analyses, the local and global inconsistency tests based on the Higgins design-by-treatment interaction model can be applied. Also, the side-splitting and the Jackson's random inconsistency model are available. Standard graphical tools for network meta-analysis (e.g., network plot, ranked forest plot, and transitivity analysis) can also be utilized. For the synthesis analyses, the Noma-Hamura's improved REML (restricted maximum likelihood)-based methods (Noma et al. (2023) <doi:10.1002/jrsm.1652> <doi:10.1002/jrsm.1651>) are adopted as the default methods.

r-bdc 1.1.5
Propagated dependencies: r-tidyselect@1.2.1 r-tibble@3.2.1 r-taxadb@0.2.1 r-stringr@1.5.1 r-stringi@1.8.4 r-stringdist@0.9.12 r-sf@1.0-19 r-rnaturalearth@1.0.1 r-rgnparser@0.3.0 r-readr@2.1.5 r-qs@0.27.2 r-purrr@1.0.2 r-magrittr@2.0.3 r-here@1.0.1 r-ggplot2@3.5.1 r-fs@1.6.5 r-foreach@1.5.2 r-dt@0.33 r-dplyr@1.1.4 r-doparallel@1.0.17 r-coordinatecleaner@3.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://brunobrr.github.io/bdc/https://github.com/brunobrr/bdc
Licenses: GPL 3+
Synopsis: Biodiversity Data Cleaning
Description:

It brings together several aspects of biodiversity data-cleaning in one place. bdc is organized in thematic modules related to different biodiversity dimensions, including 1) Merge datasets: standardization and integration of different datasets; 2) Pre-filter: flagging and removal of invalid or non-interpretable information, followed by data amendments; 3) Taxonomy: cleaning, parsing, and harmonization of scientific names from several taxonomic groups against taxonomic databases locally stored through the application of exact and partial matching algorithms; 4) Space: flagging of erroneous, suspect, and low-precision geographic coordinates; and 5) Time: flagging and, whenever possible, correction of inconsistent collection date. In addition, it contains features to visualize, document, and report data quality â which is essential for making data quality assessment transparent and reproducible. The reference for the methodology is Bruno et al. (2022) <doi:10.1111/2041-210X.13868>.

r-qfa 4.1
Propagated dependencies: r-rhpcblasctl@0.23-42 r-quantreg@5.99 r-nlme@3.1-166 r-mgcv@1.9-1 r-mass@7.3-61 r-foreach@1.5.2 r-fields@16.3 r-doparallel@1.0.17 r-colorramps@2.3.4
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://github.com/IBM/qfa
Licenses: GPL 2+
Synopsis: Quantile-Frequency Analysis (QFA) of Time Series
Description:

Quantile-frequency analysis (QFA) of time series based on trigonometric quantile regression. Spline quantile regression (SQR) for regression coefficient estimation. References: [1] Li, T.-H. (2012) "Quantile periodograms," Journal of the American Statistical Association, 107, 765â 776, <doi:10.1080/01621459.2012.682815>. [2] Li, T.-H. (2014) Time Series with Mixed Spectra, CRC Press, <doi:10.1201/b15154> [3] Li, T.-H. (2022) "Quantile Fourier transform, quantile series, and nonparametric estimation of quantile spectra," <doi:10.48550/arXiv.2211.05844>. [4] Li, T.-H. (2024) "Quantile crossing spectrum and spline autoregression estimation," <doi:10.48550/arXiv.2412.02513>. [5] Li, T.-H. (2024) "Spline autoregression method for estimation of quantile spectrum," <doi:10.48550/arXiv.2412.17163>. [6] Li, T.-H., and Megiddo, N. (2025) "Spline quantile regression," <doi:10.48550/arXiv.2501.03883>.

r-fsr 2.0.1
Propagated dependencies: r-tibble@3.2.1 r-stringr@1.5.1 r-sf@1.0-19 r-rlang@1.1.4 r-pso@1.0.4 r-ggplot2@3.5.1 r-e1071@1.7-16 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://accarniel.github.io/fsr/
Licenses: GPL 3
Synopsis: Handling Fuzzy Spatial Data
Description:

Support for fuzzy spatial objects, their operations, and fuzzy spatial inference models based on Spatial Plateau Algebra. It employs fuzzy set theory and fuzzy logic as foundation to deal with spatial fuzziness. It mainly implements underlying concepts defined in the following research papers: (i) "Spatial Plateau Algebra: An Executable Type System for Fuzzy Spatial Data Types" <doi:10.1109/FUZZ-IEEE.2018.8491565>; (ii) "A Systematic Approach to Creating Fuzzy Region Objects from Real Spatial Data Sets" <doi:10.1109/FUZZ-IEEE.2019.8858878>; (iii) "Spatial Data Types for Heterogeneously Structured Fuzzy Spatial Collections and Compositions" <doi:10.1109/FUZZ48607.2020.9177620>; (iv) "Fuzzy Inference on Fuzzy Spatial Objects (FIFUS) for Spatial Decision Support Systems" <doi:10.1109/FUZZ-IEEE.2017.8015707>; (v) "Evaluating Region Inference Methods by Using Fuzzy Spatial Inference Models" <doi:10.1109/FUZZ-IEEE55066.2022.9882658>.

r-gsd 1.0.0
Propagated dependencies: r-matrix@1.7-1 r-igraph@2.1.1 r-ggplot2@3.5.1 r-ebayesthresh@1.4-12
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GSD
Licenses: GPL 2+
Synopsis: Graph Signal Decomposition
Description:

Graph signals residing on the vertices of a graph have recently gained prominence in research in various fields. Many methodologies have been proposed to analyze graph signals by adapting classical signal processing tools. Recently, several notable graph signal decomposition methods have been proposed, which include graph Fourier decomposition based on graph Fourier transform, graph empirical mode decomposition, and statistical graph empirical mode decomposition. This package efficiently implements multiscale analysis applicable to various fields, and offers an effective tool for visualizing and decomposing graph signals. For the detailed methodology, see Ortega et al. (2018) <doi:10.1109/JPROC.2018.2820126>, Shuman et al. (2013) <doi:10.1109/MSP.2012.2235192>, Tremblay et al. (2014) <https://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569922141.pdf>, and Cho et al. (2024) "Statistical graph empirical mode decomposition by graph denoising and boundary treatment".

r-tca 1.2.1
Propagated dependencies: r-rsvd@1.0.5 r-quadprog@1.5-8 r-pracma@2.4.4 r-pbapply@1.7-2 r-nloptr@2.1.1 r-matrixstats@1.4.1 r-matrixcalc@1.0-6 r-matrix@1.7-1 r-gmodels@2.19.1 r-futile-logger@1.4.3 r-data-table@1.16.2 r-config@0.3.2
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://www.nature.com/articles/s41467-019-11052-9
Licenses: GPL 3
Synopsis: Tensor Composition Analysis
Description:

Tensor Composition Analysis (TCA) allows the deconvolution of two-dimensional data (features by observations) coming from a mixture of heterogeneous sources into a three-dimensional matrix of signals (features by observations by sources). The TCA framework further allows to test the features in the data for different statistical relations with an outcome of interest while modeling source-specific effects; particularly, it allows to look for statistical relations between source-specific signals and an outcome. For example, TCA can deconvolve bulk tissue-level DNA methylation data (methylation sites by individuals) into a three-dimensional tensor of cell-type-specific methylation levels for each individual (i.e. methylation sites by individuals by cell types) and it allows to detect cell-type-specific statistical relations (associations) with phenotypes. For more details see Rahmani et al. (2019) <DOI:10.1038/s41467-019-11052-9>.

r-bcc 1.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bcc
Licenses: GPL 3
Synopsis: Beta Control Charts
Description:

Applies Beta Control Charts to defined values. The Beta Chart presents control limits based on the Beta probability distribution, making it suitable for monitoring fraction data from a Binomial distribution as a replacement for p-Charts. The Beta Chart has been applied in three real studies and compared with control limits from three different schemes. The comparative analysis showed that: (i) the Beta approximation to the Binomial distribution is more appropriate for values confined within the [0, 1] interval; and (ii) the proposed charts are more sensitive to the average run length (ARL) in both in-control and out-of-control process monitoring. Overall, the Beta Charts outperform the Shewhart control charts in monitoring fraction data. For more details, see à ngelo Márcio Oliveira Santâ Anna and Carla Schwengber ten Caten (2012) <doi:10.1016/j.eswa.2012.02.146>.

r-vca 1.5.1
Propagated dependencies: r-numderiv@2016.8-1.1 r-matrix@1.7-1 r-lme4@1.1-35.5
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://cran.r-project.org/package=VCA
Licenses: GPL 3+
Synopsis: Variance Component Analysis
Description:

ANOVA and REML estimation of linear mixed models is implemented, once following Searle et al. (1991, ANOVA for unbalanced data), once making use of the lme4 package. The primary objective of this package is to perform a variance component analysis (VCA) according to CLSI EP05-A3 guideline "Evaluation of Precision of Quantitative Measurement Procedures" (2014). There are plotting methods for visualization of an experimental design, plotting random effects and residuals. For ANOVA type estimation two methods for computing ANOVA mean squares are implemented (SWEEP and quadratic forms). The covariance matrix of variance components can be derived, which is used in estimating confidence intervals. Linear hypotheses of fixed effects and LS means can be computed. LS means can be computed at specific values of covariables and with custom weighting schemes for factor variables. See ?VCA for a more comprehensive description of the features.

r-dfr 0.1.5
Propagated dependencies: r-sgs@0.3.5 r-matrix@1.7-1 r-mass@7.3-61 r-caret@6.0-94
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/ff1201/dfr
Licenses: GPL 3+
Synopsis: Dual Feature Reduction for SGL
Description:

Implementation of the Dual Feature Reduction (DFR) approach for the Sparse Group Lasso (SGL) and the Adaptive Sparse Group Lasso (aSGL) (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.17094>). The DFR approach is a feature reduction approach that applies strong screening to reduce the feature space before optimisation, leading to speed-up improvements for fitting SGL (Simon et al. (2013) <doi:10.1080/10618600.2012.681250>) and aSGL (Mendez-Civieta et al. (2020) <doi:10.1007/s11634-020-00413-8> and Poignard (2020) <doi:10.1007/s10463-018-0692-7>) models. DFR is implemented using the Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) algorithm, with linear and logistic SGL models supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported.

r-mpi 0.1.0
Propagated dependencies: r-tidyr@1.3.1 r-purrr@1.0.2 r-foreach@1.5.2 r-dplyr@1.1.4 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/9POINTEIGHT/MPI
Licenses: Expat
Synopsis: Computation of Multidimensional Poverty Index (MPI)
Description:

Computing package for Multidimensional Poverty Index (MPI) using Alkire-Foster method. Given N individuals, each person has D indicators of deprivation, the package compute MPI value to represent the degree of poverty in a population. The inputs are 1) an N by D matrix, which has the element (i,j) represents whether an individual i is deprived in an indicator j (1 is deprived and 0 is not deprived), and 2) the deprivation threshold. The main output is the MPI value, which has the range between zero and one. MPI value is approaching one if almost all people are deprived in all indicators, and it is approaching zero if almost no people are deprived in any indicator. Please see Alkire S., Chatterjee, M., Conconi, A., Seth, S. and Ana Vaz (2014) <doi:10.35648/20.500.12413/11781/ii039> for The Alkire-Foster methodology.

r-gma 1.0
Propagated dependencies: r-nlme@3.1-166 r-mass@7.3-61 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gma
Licenses: GPL 2+
Synopsis: Granger Mediation Analysis
Description:

This package performs Granger mediation analysis (GMA) for time series. This package includes a single level GMA model and a two-level GMA model, for time series with hierarchically nested structure. The single level GMA model for the time series of a single participant performs the causal mediation analysis which integrates the structural equation modeling and the Granger causality frameworks. A vector autoregressive model of order p is employed to account for the spatiotemporal dependencies in the data. Meanwhile, the model introduces the unmeasured confounding effect through a nonzero correlation parameter. Under the two-level model, by leveraging the variabilities across participants, the parameters are identifiable and consistently estimated based on a full conditional likelihood or a two-stage method. See Zhao, Y., & Luo, X. (2017), Granger Mediation Analysis of Multiple Time Series with an Application to fMRI, <arXiv:1709.05328> for details.

r-smm 1.0.2
Propagated dependencies: r-seqinr@4.2-36 r-discreteweibull@1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SMM
Licenses: GPL 2+ GPL 3+
Synopsis: Simulation and Estimation of Multi-State Discrete-Time Semi-Markov and Markov Models
Description:

This package performs parametric and non-parametric estimation and simulation for multi-state discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The non-parametric estimation concerns the sojourn time distributions, where no assumptions are done on the shape of distributions. Moreover, the estimation can be done on the basis of one or several sample paths, with or without censoring at the beginning or/and at the end of the sample paths. The implemented methods are described in Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>, Barbu, V.S., Limnios, N. (2008) <doi:10.1080/10485250701261913> and Trevezas, S., Limnios, N. (2011) <doi:10.1080/10485252.2011.555543>. Estimation and simulation of discrete-time k-th order Markov chains are also considered.

r-pmd 0.2.7
Propagated dependencies: r-rcolorbrewer@1.1-3 r-igraph@2.1.1 r-envigcms@0.8.0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://yufree.github.io/pmd/
Licenses: GPL 2
Synopsis: Paired Mass Distance Analysis for GC/LC-MS Based Non-Targeted Analysis and Reactomics Analysis
Description:

Paired mass distance (PMD) analysis proposed in Yu, Olkowicz and Pawliszyn (2018) <doi:10.1016/j.aca.2018.10.062> and PMD based reactomics analysis proposed in Yu and Petrick (2020) <doi:10.1038/s42004-020-00403-z> for gas/liquid chromatographyâ mass spectrometry (GC/LC-MS) based non-targeted analysis. PMD analysis including GlobalStd algorithm and structure/reaction directed analysis. GlobalStd algorithm could found independent peaks in m/z-retention time profiles based on retention time hierarchical cluster analysis and frequency analysis of paired mass distances within retention time groups. Structure directed analysis could be used to find potential relationship among those independent peaks in different retention time groups based on frequency of paired mass distances. Reactomics analysis could also be performed to build PMD network, assign sources and make biomarker reaction discovery. GUIs for PMD analysis is also included as shiny applications.

r-dep 1.28.0
Channel: guix-bioc
Location: guix-bioc/packages/d.scm (guix-bioc packages d)
Home page: https://bioconductor.org/packages/DEP
Licenses: Artistic License 2.0
Synopsis: Differential Enrichment analysis of Proteomics data
Description:

This package provides an integrated analysis workflow for robust and reproducible analysis of mass spectrometry proteomics data for differential protein expression or differential enrichment. It requires tabular input (e.g. txt files) as generated by quantitative analysis softwares of raw mass spectrometry data, such as MaxQuant or IsobarQuant. Functions are provided for data preparation, filtering, variance normalization and imputation of missing values, as well as statistical testing of differentially enriched / expressed proteins. It also includes tools to check intermediate steps in the workflow, such as normalization and missing values imputation. Finally, visualization tools are provided to explore the results, including heatmap, volcano plot and barplot representations. For scientists with limited experience in R, the package also contains wrapper functions that entail the complete analysis workflow and generate a report. Even easier to use are the interactive Shiny apps that are provided by the package.

r-asm 0.2.3
Propagated dependencies: r-quantreg@5.99 r-pracma@2.4.4 r-mass@7.3-61 r-iso@0.0-21 r-fdrtool@1.2.18
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=asm
Licenses: GPL 3+
Synopsis: Optimal Convex M-Estimation for Linear Regression via Antitonic Score Matching
Description:

This package performs linear regression with respect to a data-driven convex loss function that is chosen to minimize the asymptotic covariance of the resulting M-estimator. The convex loss function is estimated in 5 steps: (1) form an initial OLS (ordinary least squares) or LAD (least absolute deviation) estimate of the regression coefficients; (2) use the resulting residuals to obtain a kernel estimator of the error density; (3) estimate the score function of the errors by differentiating the logarithm of the kernel density estimate; (4) compute the L2 projection of the estimated score function onto the set of decreasing functions; (5) take a negative antiderivative of the projected score function estimate. Newton's method (with Hessian modification) is then used to minimize the convex empirical risk function. Further details of the method are given in Feng et al. (2024) <doi:10.48550/arXiv.2403.16688>.

r-cit 2.3.2
Dependencies: gsl@2.8 gsl@2.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/USCbiostats/cit
Licenses: Artistic License 2.0
Synopsis: Causal Inference Test
Description:

This package provides a likelihood-based hypothesis testing approach is implemented for assessing causal mediation. Described in Millstein, Chen, and Breton (2016), <DOI:10.1093/bioinformatics/btw135>, it could be used to test for mediation of a known causal association between a DNA variant, the instrumental variable', and a clinical outcome or phenotype by gene expression or DNA methylation, the potential mediator. Another example would be testing mediation of the effect of a drug on a clinical outcome by the molecular target. The hypothesis test generates a p-value or permutation-based FDR value with confidence intervals to quantify uncertainty in the causal inference. The outcome can be represented by either a continuous or binary variable, the potential mediator is continuous, and the instrumental variable can be continuous or binary and is not limited to a single variable but may be a design matrix representing multiple variables.

r-cmf 1.0.3
Propagated dependencies: r-cpp11@0.5.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CMF
Licenses: GPL 2+
Synopsis: Collective Matrix Factorization
Description:

Collective matrix factorization (CMF) finds joint low-rank representations for a collection of matrices with shared row or column entities. This code learns a variational Bayesian approximation for CMF, supporting multiple likelihood potentials and missing data, while identifying both factors shared by multiple matrices and factors private for each matrix. For further details on the method see Klami et al. (2014) <arXiv:1312.5921>. The package can also be used to learn Bayesian canonical correlation analysis (CCA) and group factor analysis (GFA) models, both of which are special cases of CMF. This is likely to be useful for people looking for CCA and GFA solutions supporting missing data and non-Gaussian likelihoods. See Klami et al. (2013) <https://research.cs.aalto.fi/pml/online-papers/klami13a.pdf> and Virtanen et al. (2012) <http://proceedings.mlr.press/v22/virtanen12.html> for details on Bayesian CCA and GFA, respectively.

r-gps 1.2
Propagated dependencies: r-matrix@1.7-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/ZheyuanLi/gps
Licenses: GPL 3
Synopsis: General P-Splines
Description:

General P-splines are non-uniform B-splines penalized by a general difference penalty, proposed by Li and Cao (2022) <arXiv:2201.06808>. Constructible on arbitrary knots, they extend the standard P-splines of Eilers and Marx (1996) <doi:10.1214/ss/1038425655>. They are also related to the O-splines of O'Sullivan (1986) <doi:10.1214/ss/1177013525> via a sandwich formula that links a general difference penalty to a derivative penalty. The package includes routines for setting up and handling difference and derivative penalties. It also fits P-splines and O-splines to (x, y) data (optionally weighted) for a grid of smoothing parameter values in the automatic search intervals of Li and Cao (2023) <doi:10.1007/s11222-022-10178-z>. It aims to facilitate other packages to implement P-splines or O-splines as a smoothing tool in their model estimation framework.

r-dbw 1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/hirotokatsumata/dbw
Licenses: Expat
Synopsis: Doubly Robust Distribution Balancing Weighting Estimation
Description:

This package implements the doubly robust distribution balancing weighting proposed by Katsumata (2024) <doi:10.1017/psrm.2024.23>, which improves the augmented inverse probability weighting (AIPW) by estimating propensity scores with estimating equations suitable for the pre-specified parameter of interest (e.g., the average treatment effects or the average treatment effects on the treated) and estimating outcome models with the estimated inverse probability weights. It also implements the covariate balancing propensity score proposed by Imai and Ratkovic (2014) <doi:10.1111/rssb.12027> and the entropy balancing weighting proposed by Hainmueller (2012) <doi:10.1093/pan/mpr025>, both of which use covariate balancing conditions in propensity score estimation. The point estimate of the parameter of interest and its uncertainty as well as coefficients for propensity score estimation and outcome regression are produced using the M-estimation. The same functions can be used to estimate average outcomes in missing outcome cases.

r-imd 1.2.2
Propagated dependencies: r-tibble@3.2.1 r-rlang@1.1.4 r-readr@2.1.5 r-janitor@2.2.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/humaniverse/IMD
Licenses: Expat
Synopsis: Index of Multiple Deprivation Data for the UK
Description:

Index of Multiple Deprivation for UK nations at various geographical levels. In England, deprivation data is for Lower Layer Super Output Areas, Middle Layer Super Output Areas, Wards, and Local Authorities based on data from <https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019>. In Wales, deprivation data is for Lower Layer Super Output Areas, Middle Layer Super Output Areas, Wards, and Local Authorities based on data from <https://gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2019>. In Scotland, deprivation data is for Data Zones, Intermediate Zones, and Council Areas based on data from <https://simd.scot>. In Northern Ireland, deprivation data is for Super Output Areas and Local Government Districts based on data from <https://www.nisra.gov.uk/statistics/deprivation/northern-ireland-multiple-deprivation-measure-2017-nimdm2017>. The IMD package also provides the composite UK index developed by <https://github.com/mysociety/composite_uk_imd>.

r-ale 0.5.0
Propagated dependencies: r-univariateml@1.5.0 r-tidyr@1.3.1 r-stringr@1.5.1 r-staccuracy@0.2.2 r-s7@0.2.0 r-rlang@1.1.4 r-purrr@1.0.2 r-progressr@0.15.0 r-patchwork@1.3.0 r-insight@0.20.5 r-ggplot2@3.5.1 r-future@1.34.0 r-furrr@0.3.1 r-dplyr@1.1.4 r-cli@3.6.3 r-broom@1.0.7
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/tripartio/ale
Licenses: Expat
Synopsis: Interpretable Machine Learning and Statistical Inference with Accumulated Local Effects (ALE)
Description:

Accumulated Local Effects (ALE) were initially developed as a model-agnostic approach for global explanations of the results of black-box machine learning algorithms. ALE has a key advantage over other approaches like partial dependency plots (PDP) and SHapley Additive exPlanations (SHAP): its values represent a clean functional decomposition of the model. As such, ALE values are not affected by the presence or absence of interactions among variables in a mode. Moreover, its computation is relatively rapid. This package reimplements the algorithms for calculating ALE data and develops highly interpretable visualizations for plotting these ALE values. It also extends the original ALE concept to add bootstrap-based confidence intervals and ALE-based statistics that can be used for statistical inference. For more details, see Okoli, Chitu. 2023. â Statistical Inference Using Machine Learning and Classical Techniques Based on Accumulated Local Effects (ALE).â arXiv. <doi:10.48550/arXiv.2310.09877>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249