REDCap Data Management - REDCapDM
is an R package that allows users to manage data exported directly from REDCap or using an API connection. This package includes several functions designed for pre-processing data, generating reports of queries such as outliers or missing values, and following up on the identified queries. REDCap (Research Electronic Data CAPture; <https://projectredcap.org>) is a web application developed at Vanderbilt University, designed for creating and managing online surveys and databases and the REDCap API is an interface that allows external applications to connect to REDCap remotely, and is used to programmatically retrieve or modify project data or settings within REDCap, such as importing or exporting data.
PADRINO houses textual representations of Integral Projection Models which can be converted from their table format into full kernels to reproduce or extend an already published analysis. Rpadrino is an R interface to this database. For more information on Integral Projection Models, see Easterling et al. (2000) <doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2>, Merow et al. (2013) <doi:10.1111/2041-210X.12146>, Rees et al. (2014) <doi:10.1111/1365-2656.12178>, and Metcalf et al. (2015) <doi:10.1111/2041-210X.12405>. See Levin et al. (2021) for more information on ipmr', the engine that powers model reconstruction <doi:10.1111/2041-210X.13683>.
Enables a user to consume the BambooHR
API endpoints using R. The actual URL of the API will depend on your company domain, and will be handled by the package automatically once you setup the config file. The API documentation can be found here <https://documentation.bamboohr.com/docs>.
This package implements the First Fit Decreasing algorithm to achieve one dimensional heuristic bin packing. Runtime is of order O(n log(n)) where n is the number of items to pack. See "The Art of Computer Programming Vol. 1" by Donald E. Knuth (1997, ISBN: 0201896834) for more details.
Write executable specifications in a natural language that describes how your code should behave. Write specifications in feature files using Gherkin language and execute them using functions implemented in R. Use them as an extension to your testthat tests to provide a high level description of how your code works.
Download and read data on United States congressional proceedings. Data is read from the Library of Congress's Congress.gov Application Programming Interface (<https://github.com/LibraryOfCongress/api.congress.gov/>
). Functions exist for all version 3 endpoints, including for bills, amendments, congresses, summaries, members, reports, communications, nominations, and treaties.
Fast and user-friendly estimation of generalized linear models with multiple fixed effects and cluster the standard errors. The method to obtain the estimated fixed-effects coefficients is based on Stammann (2018) <doi:10.48550/arXiv.1707.01815>
and Gaure (2013) <doi:10.1016/j.csda.2013.03.024>.
Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101/636746>.
Set of functions to keep track and find objects in user-defined environments by identifying environments by name --which cannot be retrieved with the built-in function environmentName()
. The package also provides functionality to obtain simplified information about function calling chains and to get an object's memory address.
This package provides summary statistics of local geospatial features within a given geographic area. It does so by calculating the area covered by a target geospatial feature (i.e. buildings, parks, lakes, etc.). The geospatial features can be of any type of geospatial data, including point, polygon or line data.
Two classifiers for open set recognition and novelty detection based on extreme value theory. The first classifier is based on the generalized Pareto distribution (GPD) and the second classifier is based on the generalized extreme value (GEV) distribution. For details, see Vignotto, E., & Engelke, S. (2018) <arXiv:1808.09902>
.
Designed to streamline the process of analyzing genotyping data from Fluidigm machines, this package offers a suite of tools for data handling and analysis. It includes functions for converting Fluidigm data to format used by PLINK', estimating errors, calculating pairwise similarities, determining pairwise similarity loci, and generating a similarity matrix.
The Food and Agriculture Organization of the United Nations (FAO) FishStat
database is the leading source of global fishery and aquaculture statistics and provides unique information for sector analysis and monitoring. This package provides the global production data from all fisheries and aquaculture in R format, ready for analysis.
Facilitates the citation of R packages used in analysis projects. Scans project for packages used, gets their citations, and produces a document with citations in the preferred bibliography format, ready to be pasted into reports or manuscripts. Alternatively, grateful can be used directly within an R Markdown or Quarto document.
We define generalized multipartite networks as the joint observation of several networks implying some common pre-specified groups of individuals. The aim is to fit an adapted version of the popular stochastic block model to multipartite networks, as described in Bar-hen, Barbillon and Donnet (2020) <arXiv:1807.10138>
.
Create publication-quality, 2-dimensional visualizations of alpha-helical peptide sequences. Specifically, allows the user to programmatically generate helical wheels and wenxiang diagrams to provide a bird's eye, top-down view of alpha-helical oligopeptides. See Wadhwa RR, et al. (2018) <doi:10.21105/joss.01008> for more information.
Core set of low-level utilities common across the hubverse'. Used to interact with hubverse schema, Hub configuration files and model outputs and designed to be primarily used internally by other hubverse packages. See Reich et al. (2022) <doi:10.2105/AJPH.2022.306831> for an overview of Collaborative Hubs.
Wait for a single key press at the R prompt. This works in terminals, but does not currently work in the Windows GUI', the OS X GUI ('R.app'), in Emacs ESS', in an Emacs shell buffer or in R Studio'. In these cases keypress stops with an error message.
Constructs tree for continuous longitudinal data and survival data using baseline covariates as partitioning variables according to the LongCART
and SurvCART
algorithm, respectively. Later also included functions to calculate conditional power and predictive power of success based on interim results and probability of success for a prospective trial.
This package performs Bayesian meta-analysis, meta-regression and model-based meta-analysis using Stan'. Includes binomial-normal hierarchical models and option to use weakly informative priors for the heterogeneity parameter and the treatment effect parameter which are described in Guenhan, Roever, and Friede (2020) <doi:10.1002/jrsm.1370>.
This package provides a system for testing differential effects among treatments in case of Randomised Block Design and Latin Square Design when there is one missing observation. Methods for this process are as described in A.M.Gun,M.K.Gupta and B.Dasgupta(2019,ISBN:81-87567-81-3).
This package provides functions, which make matrix creation conciser (such as the core package's function m()
for rowwise matrix definition or runifm()
for random value matrices). Allows to set multiple matrix values at once, by using list of formulae. Provides additional matrix operators and dedicated plotting function.
Given any graph, the node2vec algorithm can learn continuous feature representations for the nodes, which can then be used for various downstream machine learning tasks.The techniques are detailed in the paper "node2vec: Scalable Feature Learning for Networks" by Aditya Grover, Jure Leskovec(2016),available at <arXiv:1607.00653>
.
Analyses of OTU tables produced by 16S rRNA
gene amplicon sequencing, as well as example data. It contains the data and scripts used in the paper Linz, et al. (2017) "Bacterial community composition and dynamics spanning five years in freshwater bog lakes," <doi: 10.1128/mSphere.00169-17>
.