This package contains techniques for mining large and high-dimensional data sets by using the concept of Intrinsic Dimension (ID). Here the ID is not necessarily an integer. It is extended to fractal dimensions. And the Morisita estimator is used for the ID estimation, but other tools are included as well.
This package performs Invariant Coordinate Selection (ICS) (Tyler, Critchley, Duembgen and Oja (2009) <doi:10.1111/j.1467-9868.2009.00706.x>) and especially ICS for multivariate outlier detection with application to quality control (Archimbaud, Nordhausen, Ruiz-Gazen (2018) <doi:10.1016/j.csda.2018.06.011>) using a shiny app.
This package provides methods for calculating and testing the significance of pairwise monotonic association from and based on the work of Pimentel (2009) <doi:10.4135/9781412985291.n2>. Computation of association of vectors from one or multiple sets can be performed in parallel thanks to the packages foreach and doMC'.
This package provides a series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis.
Administrative Boundaries of Spain at several levels (Autonomous Communities, Provinces, Municipalities) based on the GISCO Eurostat database <https://ec.europa.eu/eurostat/web/gisco> and CartoBase SIANE from Instituto Geografico Nacional <https://www.ign.es/>. It also provides a leaflet plugin and the ability of downloading and processing static tiles.
This package provides a comprehensive library for colour vectors and colour palettes using a new family of colour classes (palettes_colour and palettes_palette) that always print as hex codes with colour previews. Capabilities include: formatting, casting and coercion, extraction and updating of components, plotting, colour mixing arithmetic, and colour interpolation.
Estimate networks and causal relationships in complex systems through Structural Equation Modeling. This package also includes functions for importing, weight, manipulate, and fit biological network models within the Structural Equation Modeling framework as outlined in the Supplementary Material of Grassi M, Palluzzi F, Tarantino B (2022) <doi:10.1093/bioinformatics/btac567>.
Partitions the phenotypic variance of a plastic trait, studied through its reaction norm. The variance partition distinguishes between the variance arising from the average shape of the reaction norms (V_Plas) and the (additive) genetic variance . The latter is itself separated into an environment-blind component (V_G/V_A) and the component arising from plasticity (V_GxE/V_AxE). The package also provides a way to further partition V_Plas into aspects (slope/curvature) of the shape of the average reaction norm (pi-decomposition) and partition V_Add (gamma-decomposition) and V_AxE (iota-decomposition) into the impact of genetic variation in the reaction norm parameters. Reference: de Villemereuil & Chevin (2025) <doi:10.32942/X2NC8B>.
This package provides classes and methods for handling genetic data. It includes classes to represent genotypes and haplotypes at single markers up to multiple markers on multiple chromosomes. Function include allele frequencies, flagging homo/heterozygotes, flagging carriers of certain alleles, estimating and testing for Hardy-Weinberg disequilibrium, estimating and testing for linkage disequilibrium, ...
This package contains a collection of functions (written as shiny modules) for the visualisation and the statistical analysis of omics data. These plots can be displayed individually or embedded in a global Shiny module. Additionaly, it is possible to integrate third party modules to the main interface of the package omXplore.
Interface with the Brickset API <https://brickset.com/article/52664/api-version-3-documentation> for getting data about LEGO sets. Data sets that can be used for teaching and learning without the need of a Brickset account and API key are also included. Includes all LEGO since through the end of 2023.
Geometric circle fitting with Levenberg-Marquardt (a, b, R), Levenberg-Marquardt reduced (a, b), Landau, Spath and Chernov-Lesort. Algebraic circle fitting with Taubin, Kasa, Pratt and Fitzgibbon-Pilu-Fisher. Geometric ellipse fitting with ellipse LMG (geometric parameters) and conic LMA (algebraic parameters). Algebraic ellipse fitting with Fitzgibbon-Pilu-Fisher and Taubin.
Data screening is an important first step of any statistical analysis. dataMaid auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset.
Interactive forest plot for clinical trial safety analysis using metalite', reactable', plotly', and Analysis Data Model (ADaM) datasets. Includes functionality for adverse event filtering, incidence-based group filtering, hover-over reveals, and search and sort operations. The workflow allows for metadata construction, data preparation, output formatting, and interactive plot generation.
Automatically process Fluorescence Recovery After Photobleaching (FRAP) data and generate consistent, publishable figures. Note: this package does not replace ImageJ (or its equivalence) in raw image quantification. Some references about the methods: Sprague, Brian L. (2004) <doi:10.1529/biophysj.103.026765>; Day, Charles A. (2012) <doi:10.1002/0471142956.cy0219s62>.
Authenticate users in Shiny applications using Google Firebase with any of the many methods provided; email and password, email link, or using a third-party provider such as Github', Twitter', or Google'. Use Firebase Storage to store files securely, and leverage Firebase Analytics to easily log events and better understand your audience.
This package provides extension types and conversions to between R-native object types and Arrow columnar types. This includes integration among the arrow', nanoarrow', sf', and wk packages such that spatial metadata is preserved wherever possible. Extension type implementations ensure first-class geometry data type support in the arrow and nanoarrow packages.
Extend ggplot2 facets to panel layouts arranged in a grid with ragged edges. facet_ragged_rows() groups panels into rows that can vary in length, facet_ragged_cols() does the same but for columns. These can be useful, for example, to represent nested or partially crossed relationships between faceting variables.
S3 functions implementing both statistical and graphical goodness-of-fit measures between observed and simulated values, mainly oriented to be used during the calibration, validation, and application of hydrological models. Missing values in observed and/or simulated values can be removed before computations. Comments / questions / collaboration of any kind are very welcomed.
This package provides methods (standard and advanced) for analysis of agreement between measurement methods. These cover Bland-Altman plots, Deming regression, Lin's Total deviation index, and difference-on-average regression. See Carstensen B. (2010) "Comparing Clinical Measurement Methods: A Practical Guide (Statistics in Practice)" <doi:10.1002/9780470683019> for more information.
This package provides a collection of network analytic (convenience) functions which are missing in other standard packages. This includes triad census with attributes <doi:10.1016/j.socnet.2019.04.003>, core-periphery models <doi:10.1016/S0378-8733(99)00019-2>, and several graph generators. Most functions are build upon igraph'.
This package infers species associations from community matrices. Uses local and (optional) regional-scale co-occurrence data by comparing observed partial correlation coefficients between species to those estimated from regional species distributions. Extends Gaussian graphical models to a null modeling framework. Provides interface to a variety of inverse covariance matrix estimation methods.
This package provides functions to test/check/verify/investigate the ordering of vectors. The is_[strictly_]* family of functions test vectors for sorted', monotonic', increasing', decreasing order; is_constant and is_incremental test for the degree of ordering. `ordering` provides a numeric indication of ordering -2 (strictly decreasing) to 2 (strictly increasing).
The perturbR() function incrementally perturbs network edges (using the rewireR function)and compares the resulting community detection solutions from the rewired networks with the solution found for the original network. These comparisons aid in understanding the stability of the original solution. The package requires symmetric, weighted (specifically, count) matrices/networks.