Calculates the cost of crossing in terms of the number of individuals and generations, which is theoretically formulated by Servin et al. (2004) <DOI:10.1534/genetics.103.023358>. This package has been designed for selecting appropriate parental genotypes and find the most efficient crossing scheme for gene pyramiding, especially for plant breeding.
Imputation (replacement) of missing values in univariate time series. Offers several imputation functions and missing data plots. Available imputation algorithms include: Mean', LOCF', Interpolation', Moving Average', Seasonal Decomposition', Kalman Smoothing on Structural Time Series models', Kalman Smoothing on ARIMA models'. Published in Moritz and Bartz-Beielstein (2017) <doi:10.32614/RJ-2017-009>.
Generates three inter-related genomic datasets: methylation, gene expression and protein expression having user specified cluster patterns. The simulation utilizes the realistic inter- and intra- relationships from real DNA methylation, mRNA expression and protein expression data from the TCGA ovarian cancer study, Chalise (2016) <doi:10.1016/j.cmpb.2016.02.011>.
Principal component analysis (PCA) is one of the most widely used data analysis techniques. This package provides a series of vignettes explaining PCA starting from basic concepts. The primary purpose is to serve as a self-study resource for anyone wishing to understand PCA better. A few convenience functions are provided as well.
Supplies a LazyData facility for packages which have data sets but do not provide LazyData: true. A single function is is included, requireData, which is a drop-in replacement for base::require, but carrying the additional functionality. By default, it suppresses package startup messages as well. See argument reallyQuitely'.
Determining consensus seriations for binary incidence matrices, using a two-step process of Procrustes-fit correspondence analysis for heuristic selection of partial seriations and iterative regression to establish a single consensus. Contains the Lakhesis Calculator, a graphical platform for identifying seriated sequences. Collins-Elliott (2024) <https://volweb.utk.edu/~scolli46/sceLakhesis.pdf>.
An adaption of the consensus clustering approach from ConsensusClusterPlus for longitudinal data. The longitudinal data is clustered with flexible mixture models from flexmix', while the consensus matrices are hierarchically clustered as in ConsensusClusterPlus'. By using the flexibility from flexmix and FactoMineR', one can use mixed data types for the clustering.
This package provides functions for calculating the point and interval estimates of the natural indirect effect (NIE), total effect (TE), and mediation proportion (MP), based on the product approach. We perform the methods considered in Cheng, Spiegelman, and Li (2021) Estimating the natural indirect effect and the mediation proportion via the product method.
This package provides functions for multivariate and propensity score matching and for finding optimal balance based on a genetic search algorithm. A variety of univariate and multivariate metrics to determine if balance has been obtained are also provided. For details, see the paper by Jasjeet Sekhon (2007, <doi:10.18637/jss.v042.i07>).
Quantitative trait loci (QTL) analysis and exploration of meiotic patterns in autopolyploid bi-parental F1 populations. For all ploidy levels, identity-by-descent (IBD) probabilities can be estimated. Significance thresholds, exploring QTL allele effects and visualising results are provided. For more background and to reference the package see <doi:10.1093/bioinformatics/btab574>.
This package provides flexible hazard ratio curves allowing non-linear relationships between continuous predictors and survival. To better understand the effects that each continuous covariate has on the outcome, results are expressed in terms of hazard ratio curves, taking a specific covariate value as reference. Confidence bands for these curves are also derived.
This package provides a comprehensive suite of functions designed for constructing and managing ShinyItemAnalysis modules, supplemented with detailed guides, ready-to-use templates, linters, and tests. This package allows developers to seamlessly create and integrate one or more modules into their existing packages or to start a new module project from scratch.
Implementation of small area estimation using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error. The rjags package is employed to obtain parameter estimates. For the references, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>, and Ntzoufras (2009, ISBN-10: 1118210352).
This package provides a set of functions to: (1) perform fuzzy clustering of vegetation data (De Caceres et al, 2010) <doi:10.1111/j.1654-1103.2010.01211.x>; (2) to assess ecological community similarity on the basis of structure and composition (De Caceres et al, 2013) <doi:10.1111/2041-210X.12116>.
(guix-science-nonfree packages bioconductor)DoRothEA is a gene regulatory network containing signed transcription factor. DoRothEA regulons, the collection of a TF and its transcriptional targets, were curated and collected from different types of evidence for both human and mouse. A confidence level was assigned to each TF-target interaction based on the number of supporting evidence.
The STRINGdb package provides an R interface to the STRING protein-protein interactions database. STRING is a database of known and predicted protein-protein interactions. The interactions include direct (physical) and indirect (functional) associations. Each interaction is associated with a combined confidence score that integrates the various evidences.
Package for the analysis of pooled genetic screens (e.g. CRISPR-KO). The analysis of such screens is based on the comparison of gRNA abundances before and after a cell proliferation phase. The gscreend packages takes gRNA counts as input and allows detection of genes whose knockout decreases or increases cell proliferation.
Single sample estimation of exposure to mutational signatures. Exposures to known mutational signatures are estimated for single samples, based on quadratic programming algorithms. Bootstrapping the input mutational catalogues provides estimations on the stability of these exposures. The effect of the sequence composition of mutational context can be taken into account by normalising the catalogues.
Testing, Implementation, and Forecasting of the ARIMA-ANN hybrid model. The ARIMA-ANN hybrid model combines the distinct strengths of the Auto-Regressive Integrated Moving Average (ARIMA) model and the Artificial Neural Network (ANN) model for time series forecasting.For method details see Zhang, GP (2003) <doi:10.1016/S0925-2312(01)00702-0>.
Modern software often poorly support older file formats. This package intends to handle many file formats that were native to the antiquated Commodore Amiga machine. This package focuses on file types from the older Amiga operating systems (<= 3.0). It will read and write specific file formats and coerces them into more contemporary data.
Implementation of the augmented Simulation-Extrapolation (SIMEX) algorithm proposed by Yi et al. (2015) <doi:10.1080/01621459.2014.922777> for analyzing the data with mixed measurement error and misclassification. The main function provides a similar summary output as that of glm() function. Both parametric and empirical SIMEX are considered in the package.
An efficient cross-validated approach for covariance matrix estimation, particularly useful in high-dimensional settings. This method relies upon the theory of high-dimensional loss-based covariance matrix estimator selection developed by Boileau et al. (2022) <doi:10.1080/10618600.2022.2110883> to identify the optimal estimator from among a prespecified set of candidates.
Estimates a lasso penalized precision matrix via the blockwise coordinate descent (BCD). This package is a simple wrapper around the popular glasso package that extends and enhances its capabilities. These enhancements include built-in cross validation and visualizations. See Friedman et al (2008) <doi:10.1093/biostatistics/kxm045> for details regarding the estimation method.
Hansen's (1995) Covariate-Augmented Dickey-Fuller (CADF) test. The only required argument is y, the Tx1 time series to be tested. If no stationary covariate X is passed to the procedure, then an ordinary ADF test is performed. The p-values of the test are computed using the procedure illustrated in Lupi (2009).