Fit Bayesian models using brms'/'Stan with parsnip'/'tidymodels via bayesian <doi:10.5281/zenodo.4426836>. tidymodels is a collection of packages for machine learning; see Kuhn and Wickham (2020) <https://www.tidymodels.org>). The technical details of brms and Stan are described in Bürkner (2017) <doi:10.18637/jss.v080.i01>, Bürkner (2018) <doi:10.32614/RJ-2018-017>, and Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
This package provides functions to align curves and to compute mean curves based on the elastic distance defined in the square-root-velocity framework. For more details on this framework see Srivastava and Klassen (2016, <doi:10.1007/978-1-4939-4020-2>). For more theoretical details on our methods and algorithms see Steyer et al. (2023, <doi:10.1111/biom.13706>) and Steyer et al. (2023, <arXiv:2305.02075>).
Estimates and provides inference for quantities that assess high dimensional mediation and potential surrogate markers including the direct effect of treatment, indirect effect of treatment, and the proportion of treatment effect explained by a surrogate/mediator; details are described in Zhou et al (2022) <doi:10.1002/sim.9352> and Zhou et al (2020) <doi:10.1093/biomet/asaa016>. This package relies on the optimization software MOSEK', <https://www.mosek.com>.
The genridge package introduces generalizations of the standard univariate ridge trace plot used in ridge regression and related methods. These graphical methods show both bias (actually, shrinkage) and precision, by plotting the covariance ellipsoids of the estimated coefficients, rather than just the estimates themselves. 2D and 3D plotting methods are provided, both in the space of the predictor variables and in the transformed space of the PCA/SVD of the predictors.
This algorithm is described in detail in the paper "Hedging Forecast Combinations With an Application to the Random Forest" by Beck et al. (2024) <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5032102>. The package provides a function hedgedrf() that can be used to train a Hedged Random Forest model on a dataset, and a function predict.hedgedrf() that can be used to make predictions with the model.
The wiDB...() functions provide an interface to the public API of the wiDB <https://github.com/SPATIAL-Lab/isoWater/blob/master/Protocol.md>: build, check and submit queries, and receive and unpack responses. Data analysis functions support Bayesian inference of the source and source isotope composition of water samples that may have experienced evaporation. Algorithms adapted from Bowen et al. (2018, <doi:10.1007/s00442-018-4192-5>).
The app will calculate the ICER (incremental cost-effectiveness ratio) Rawlins (2012) <doi:10.1016/B978-0-7020-4084-9.00044-6> from the mean costs and quality-adjusted life years (QALY) Torrance and Feeny (2009) <doi:10.1017/S0266462300008461> for a set of treatment options, and draw the efficiency frontier in the costs-effectiveness plane. The app automatically identifies and excludes dominated and extended-dominated options from the ICER calculation.
Variational Expectation-Maximization algorithm to fit the noisy stochastic block model to an observed dense graph and to perform a node clustering. Moreover, a graph inference procedure to recover the underlying binary graph. This procedure comes with a control of the false discovery rate. The method is described in the article "Powerful graph inference with false discovery rate control" by T. Rebafka, E. Roquain, F. Villers (2020) <arXiv:1907.10176>.
This package provides functions to compute split generalized linear models. The approach fits generalized linear models that split the covariates into groups. The optimal split of the variables into groups and the regularized estimation of the coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. Example applications can be found in Christidis et al. (2021) <doi:10.48550/arXiv.2102.08591>.
This package provides a Package for selecting variables for the joint modeling of mean and dispersion (including models for mixture experiments) based on hypothesis testing and the quality of model's fit. In each iteration of the selection process, a criterion for checking the goodness of fit is used as a filter for choosing the terms that will be evaluated by a hypothesis test. Pinto & Pereira (2021) <arXiv:2109.07978>.
Computes the test statistics for examining the significance of autocorrelation in univariate time series, cross-correlation in bivariate time series, Pearson correlations in multivariate series and test statistics for i.i.d. property of univariate series given in Dalla, Giraitis and Phillips (2022), <https://www.cambridge.org/core/journals/econometric-theory/article/abs/robust-tests-for-white-noise-and-crosscorrelation/4D77C12C52433F4C6735E584C779403A>, <https://elischolar.library.yale.edu/cowles-discussion-paper-series/57/>.
Complete work flow for the analysis of pharmacokinetic pharmacodynamic (PKPD), physiologically-based pharmacokinetic (PBPK) and systems pharmacology models including: creation of ordinary differential equation-based models, pooled parameter estimation, individual/population based simulations, rule-based simulations for clinical trial design and modeling assays, deployment with a customizable Shiny app, and non-compartmental analysis. System-specific analysis templates can be generated and each element includes integrated reporting with PowerPoint and Word'.
Perform the analysis of the World Health Organization (WHO) Pharmacovigilance database VigiBase (Extract Case Level version), <https://who-umc.org/> e.g., load data, perform data management, disproportionality analysis, and descriptive statistics. Intended for pharmacovigilance routine use or studies. This package is NOT supported nor reflect the opinion of the WHO, or the Uppsala Monitoring Centre. Disproportionality methods are described by Norén et al (2013) <doi:10.1177/0962280211403604>.
This package provides a multi-objective optimization algorithm for disease sub-type discovery based on a non-dominated sorting genetic algorithm. The Galgo framework combines the advantages of clustering algorithms for grouping heterogeneous omics data and the searching properties of genetic algorithms for feature selection. The algorithm search for the optimal number of clusters determination considering the features that maximize the survival difference between sub-types while keeping cluster consistency high.
This package produces tables with the level of replication (number of replicates) and the experimental uncoded values of the quantitative factors to be used for rotatable Central Composite Design (CCD) experimentation and a 2-D contour plot of the corresponding variance of the predicted response according to Mead et al. (2012) <doi:10.1017/CBO9781139020879> design_ccd(), and analyzes CCD data with response surface methodology ccd_analysis(). A rotatable CCD provides values of the variance of the predicted response that are concentrically distributed around the average treatment combination used in the experimentation, which with uniform precision (implied by the use of several replicates at the average treatment combination) improves greatly the search and finding of an optimum response. These properties of a rotatable CCD represent undeniable advantages over the classical factorial design, as discussed by Panneton et al. (1999) <doi:10.13031/2013.13267> and Mead et al. (2012) <doi:10.1017/CBO9781139020879.018> among others.
Monocle 3 performs clustering, differential expression and trajectory analysis for single-cell expression experiments. It orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. Monocle 3 also performs differential expression analysis, clustering, visualization, and other useful tasks on single-cell expression data. It is designed to work with RNA-Seq data, but could be used with other types as well.
This package aims to make it easy to use various types of fonts (TrueType, OpenType, Type 1, web fonts, etc.) in R graphs, and supports most output formats of R graphics including PNG, PDF and SVG. Text glyphs will be converted into polygons or raster images, hence after the plot has been created, it no longer relies on the font files. No external software such as Ghostscript is needed to use this package.
Tree based algorithms can be improved by introducing boosting frameworks. LightGBM is one such framework, based on Ke, Guolin et al. (2017). This package offers an R interface to work with it. It is designed to be distributed and efficient with the following goals:
Faster training speed and higher efficiency;
lower memory usage;
better accuracy;
parallel learning supported; and
capable of handling large-scale data.
This package is a collection of baseline correction algorithms. Beside those it provides a framework and a Tcl/Tk enabled GUI for optimizing baseline algorithm parameters. Typical use is the removal of the background effects from spectra, which are originating from various types of spectroscopy and spectrometry. Also, there is a possibility of optimizing this with regard to regression or classification results. Correction methods include polynomial fitting, weighted local smoothers and many more.
This package provides a backward-pipe operator for magrittr (%<%) or pipeR (%<<%) that allows for a performing operations from right-to-left. This allows writing more legible code where right-to-left ordering is natural. This is common with hierarchies and nested structures such as trees, directories or markup languages (e.g. HTML and XML). The package also includes a R-Studio add-in that can be bound to a keyboard shortcut.
This package provides a method for identifying pattern changes between 2 experimental conditions in correlation networks (e.g., gene co-expression networks), which builds on a commonly used association measure, such as Pearson's correlation coefficient. This package includes functions to calculate correlation matrices for high-dimensional dataset and to test differential correlation, which means the changes in the correlation relationship among variables (e.g., genes and metabolites) between 2 experimental conditions.
Graphical approach provides a useful framework for multiplicity adjustment in clinical trials with multiple endpoints. This package includes statistical methods to optimize sample size over initial weight and transition probability in a graphical approach under a common setting, which is to use marginal power for each endpoint in a trial design. See Zhang, F. and Gou, J. (2023). Sample size optimization for clinical trials using graphical approaches for multiplicity adjustment, Technical Report.
Changes of landscape diversity and structure can be detected soon if relying on landscape class combinations and analysing patterns at multiple scales. LandComp provides such an opportunity, based on Juhász-Nagy's functions (Juhász-Nagy P, Podani J 1983 <doi:10.1007/BF00129432>). Functions can handle multilayered data. Requirements of the input: binary data contained by a regular square or hexagonal grid, and the grid should have projected coordinates.
This package provides a toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data.