Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data.
BiocSet displays different biological sets in a triple tibble format. These three tibbles are element, set, and elementset. The user has the ability to activate one of these three tibbles to perform common functions from the dplyr package. Mapping functionality and accessing web references for elements/sets are also available in BiocSet.
Latent variable modeling with Principal Component Analysis (PCA) and Partial Least Squares (PLS) are powerful methods for visualization, regression, classification, and feature selection of omics data where the number of variables exceeds the number of samples and with multicollinearity among variables. Orthogonal Partial Least Squares (OPLS) enables to separately model the variation correlated (predictive) to the factor of interest and the uncorrelated (orthogonal) variation. While performing similarly to PLS, OPLS facilitates interpretation.
This package provides imlementations of PCA, PLS, and OPLS for multivariate analysis and feature selection of omics data. In addition to scores, loadings and weights plots, the package provides metrics and graphics to determine the optimal number of components (e.g. with the R2 and Q2 coefficients), check the validity of the model by permutation testing, detect outliers, and perform feature selection (e.g. with Variable Importance in Projection or regression coefficients).
This package allows for persistent storage, access, exploration, and manipulation of Cufflinks high-throughput sequencing data. In addition, provides numerous plotting functions for commonly used visualizations.
This package provides a method for combining single-cell cytometry datasets, which increases the analytical flexibility and the statistical power of the analyses while minimizing technical noise.
This package provides methods for microarray analysis that take basic data types such as matrices and lists of vectors. These methods can be used standalone, be utilized in other packages, or be wrapped up in higher-level classes.
This package contains several tools for analyzing Sanger Sequencing data files in R, including reading .scf and .ab1 files, making basecalls and plotting chromatograms.
DeconSeq is an R package for deconvolution of heterogeneous tissues based on mRNA-Seq data. It models the expression levels from heterogeneous cell populations in mRNA-Seq as the weighted average of expression from different constituting cell types and predicted cell type proportions of single expression profiles.
This package awst (Asymmetric Within-Sample Transformation) that regularizes RNA-seq read counts and reduces the effect of noise on the classification of samples. AWST comprises two main steps: standardization and smoothing. These steps transform gene expression data to reduce the noise of the lowly expressed features, which suffer from background effects and low signal-to-noise ratio, and the influence of the highly expressed features, which may be the result of amplification bias and other experimental artifacts.
Feature selection is critical in omics data analysis to extract restricted and meaningful molecular signatures from complex and high-dimension data, and to build robust classifiers. This package implements a method to assess the relevance of the variables for the prediction performances of the classifier. The approach can be run in parallel with the PLS-DA, Random Forest, and SVM binary classifiers. The signatures and the corresponding 'restricted' models are returned, enabling future predictions on new datasets.
This package provides a client for the OmniPath web service and many other resources. It also includes functions to transform and pretty print some of the downloaded data, functions to access a number of other resources. Furthermore, OmnipathR features a close integration with the NicheNet method for ligand activity prediction from transcriptomics data.
MDQC is a multivariate quality assessment method for microarrays based on quality control (QC) reports. The Mahalanobis distance of an array's quality attributes is used to measure the similarity of the quality of that array against the quality of the other arrays. Then, arrays with unusually high distances can be flagged as potentially low-quality.
This package reads Bruker NMR data directories both zipped and unzipped. It provides automated and efficient signal processing for untargeted NMR metabolomics. It is able to interpolate the samples, detect outliers, exclude regions, normalize, detect peaks, align the spectra, integrate peaks, manage metadata and visualize the spectra. After spectra processing, it can apply multivariate analysis on extracted data. Efficient plotting with 1-D data is also available. Basic reading of 1D ACD/Labs exported JDX samples is also available.
This is a package for parsing Affymetrix files (CDF, CEL, CHP, BPMAP, BAR). It provides methods for fast and memory efficient parsing of Affymetrix files using the Affymetrix' Fusion SDK. Both ASCII- and binary-based files are supported. Currently, there are methods for reading chip definition file (CDF) and a cell intensity file (CEL). These files can be read either in full or in part. For example, probe signals from a few probesets can be extracted very quickly from a set of CEL files into a convenient list structure.
This package provides an annotation database of Homo sapiens genome data. It is derived from the UCSC hg38 genome and based on the "knownGene" track. The database is exposed as a TxDb object.
The purpose of this GO.db annotation package is to provide detailed information about the latest version of the Gene Ontologies.
This package provides a manifest for Illumina's 450k array data.
The topGO package provides tools for testing gene ontology (GO) terms while accounting for the topology of the GO graph. Different test statistics and different methods for eliminating local similarities and dependencies between GO terms can be implemented and applied.
This package provides many functions for computing the nonparametric maximum likelihood estimator (NPMLE) for censored and truncated data.
The SparseArray package is an infrastructure package that provides an array-like container for efficient in-memory representation of multidimensional sparse data in R. The package defines the SparseArray virtual class and two concrete subclasses: COO_SparseArray and SVT_SparseArray. Each subclass uses its own internal representation of the nonzero multidimensional data, the "COO layout" and the "SVT layout", respectively. SVT_SparseArray objects mimic as much as possible the behavior of ordinary matrix and array objects in base R. In particular, they support most of the "standard matrix and array API" defined in base R and in the matrixStats package from CRAN.
This package helps with the analysis of array CGH data by detecting of the breakpoints in the genomic profiles and assignment of a status (gain, normal or loss) to each chromosomal regions identified.
This package provides functionality for running and comparing many different clusterings of single-cell sequencing data or other large mRNA expression data sets.
This package provides functions to estimate variance-mean dependence in count data from high-throughput nucleotide sequencing assays and test for differential expression based on a model using the negative binomial distribution.
This package is focused on finding differential exon usage using RNA-seq exon counts between samples with different experimental designs. It provides functions that allows the user to make the necessary statistical tests based on a model that uses the negative binomial distribution to estimate the variance between biological replicates and generalized linear models for testing. The package also provides functions for the visualization and exploration of the results.