Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package is designed to store minor allele frequency data. It retrieves this data from the Genome Aggregation Database (gnomAD version 3.1.2) for the human genome version GRCh38.
This package provides basic plotting, data manipulation and processing of mass spectrometry based proteomics data.
This package provides a generic three-step pre-processing package for protein microarray data. This package contains different data pre-processing procedures to allow comparison of their performance. These steps are background correction, the coefficient of variation (CV) based filtering, batch correction and normalization.
This package is to find SNV/Indel differences between two bam files with near relationship in a way of pairwise comparison through each base position across the genome region of interest. The difference is inferred by Fisher test and euclidean distance, the input of which is the base count (A,T,G,C) in a given position and read counts for indels that span no less than 2bp on both sides of indel region.
This package provides Affymetrix HG-U133_Plus_2 array annotation data (chip hgu133plus2) assembled using data from public repositories.
This package provides a Poisson mixture model is implemented to cluster genes from high-throughput transcriptome sequencing (RNA-seq) data. Parameter estimation is performed using either the EM or CEM algorithm, and the slope heuristics are used for model selection (i.e., to choose the number of clusters).
The aim of XINA is to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with co-abundance patterns may have common molecular functions. XINA imports multiple datasets, tags dataset in silico, and combines the data for subsequent subgrouping into multiple clusters. The result is a single output depicting the variation across all conditions. XINA not only extracts coabundance profiles within and across experiments, but also incorporates protein-protein interaction databases and integrative resources such as Kyoto encyclopedia of genes and genomes (KEGG) to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs.
This package implements clustering of microarray gene expression profiles according to functional annotations. For each term genes are annotated to, splits into two subclasses are computed and a significance of the supporting gene set is determined.
The package contains functions to infer and visualize cell cycle process using Single-cell RNA-Seq data. It exploits the idea of transfer learning, projecting new data to the previous learned biologically interpretable space. The tricycle provides a pre-learned cell cycle space, which could be used to infer cell cycle time of human and mouse single cell samples. In addition, it also offer functions to visualize cell cycle time on different embeddings and functions to build new reference.
This package provides an integrated pipeline for the analysis of PAR-CLIP data. PAR-CLIP-induced transitions are first discriminated from sequencing errors, SNPs and additional non-experimental sources by a non- parametric mixture model. The protein binding sites (clusters) are then resolved at high resolution and cluster statistics are estimated using a rigorous Bayesian framework. Post-processing of the results, data export for UCSC genome browser visualization and motif search analysis are provided. In addition, the package integrates RNA-Seq data to estimate the False Discovery Rate of cluster detection. Key functions support parallel multicore computing. While wavClusteR was designed for PAR-CLIP data analysis, it can be applied to the analysis of other NGS data obtained from experimental procedures that induce nucleotide substitutions (e.g. BisSeq).
This package provides per-exon and per-gene read counts computed for selected genes from RNA-seq data that were presented in the article 'Conservation of an RNA regulatory map between Drosophila and mammals' by Brooks et al., Genome Research 2011.
This package provides tools to analyze and visualize high-throughput metabolomics data acquired using chromatography-mass spectrometry. These tools preprocess data in a way that enables reliable and powerful differential analysis.
This package implements functions for copy number variant calling, plotting, export and analysis from whole-genome single cell sequencing data.
This package provides modified versions and novel implementation of functions for parallel evaluation, tailored to use with Bioconductor objects.
This package identifies differential expression in high-throughput count data, such as that derived from next-generation sequencing machines, calculating estimated posterior likelihoods of differential expression (or more complex hypotheses) via empirical Bayesian methods.
This package corrects GC and mappability biases for readcounts (i.e. coverage) in non-overlapping windows of fixed length for single whole genome samples, yielding a rough estimate of copy number for further analysis. It was designed for rapid correction of high coverage whole genome tumor and normal samples.
This package provides supporting annotation and test data for SeSAMe package. This includes chip tango addresses, mapping information, performance annotation, and trained predictor for Infinium array data. This package provides user access to essential annotation data for working with many generations of the Infinium DNA methylation array. It currently supports human array (HM27, HM450, EPIC), mouse array (MM285) and the HorvathMethylChip40 (Mammal40) array.
Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values (dropout imputation). Most existing dropout imputation methods are limited in the sense that they exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship information. The ADImpute package proposes two methods to address this issue:
a gene regulatory network-based approach using gene-gene relationships learnt from external data;
a baseline approach corresponding to a sample-wide average.
ADImpute implements these novel methods and also combines them with existing imputation methods like DrImpute and SAVER. ADImpute can learn the best performing method per gene and combine the results from different methods into an ensemble.
Wrench is a package for normalization sparse genomic count data, like that arising from 16s metagenomic surveys.
This package provides visualization tools for flow cytometry data.
This package provides UCSC phastCons conservation scores for the human genome (hg19) calculated from multiple alignments with other 99 vertebrate species.
Microarray quality assessment is a major concern of microarray analysts. This package provides some simple approaches to in silico creation of quality problems in CEL-level data to help evaluate performance of quality metrics.
This package translates bedtools command-line invocations to R code calling functions from the Bioconductor *Ranges infrastructure. This is intended to educate novice Bioconductor users and to compare the syntax and semantics of the two frameworks.
BBCAnalyzer is a package for visualizing the relative or absolute number of bases, deletions and insertions at defined positions in sequence alignment data available as bam files in comparison to the reference bases. Markers for the relative base frequencies, the mean quality of the detected bases, known mutations or polymorphisms and variants called in the data may additionally be included in the plots.