Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate coefficients of Cox proportional hazards model using stochastic gradient descent algorithm for batch data.
This package provides a comprehensive framework for time series omics analysis, integrating changepoint detection, smooth and shape-constrained trends, and uncertainty quantification. It supports gene- and transcript-level inferences, p-value aggregation for improved power, and both case-only and case-control designs. It includes an interactive shiny interface. The methods are described in Yates et al. (2024) <doi:10.1101/2024.12.22.630003>.
Classifies the type of cancer using routinely collected data commonly found in cancer registries from pathology reports. The package implements the International Classification of Diseases for Oncology, 3rd Edition site (topography), histology (morphology), and behaviour codes of neoplasms to classify cancer type <https://www.who.int/standards/classifications/other-classifications/international-classification-of-diseases-for-oncology>. Classification in children utilize the International Classification of Childhood Cancer by Steliarova-Foucher et al. (2005) <doi:10.1002/cncr.20910>. Adolescent and young adult cancer classification is based on Barr et al. (2020) <doi:10.1002/cncr.33041>.
Sampling from the Cholesky factorization of a Wishart random variable, sampling from the inverse Wishart distribution, sampling from the Cholesky factorization of an inverse Wishart random variable, sampling from the pseudo Wishart distribution, sampling from the generalized inverse Wishart distribution, computing densities for the Wishart and inverse Wishart distributions, and computing the multivariate gamma and digamma functions. Provides a header file so the C functions can be called directly from other programs.
This package provides a set of functions to perform queries against the CCM API <https://mohcontacttracing.my.salesforce.com>.
This package provides routines for fitting Cox models by likelihood based boosting for single event survival data with right censoring or in the presence of competing risks. The methodology is described in Binder and Schumacher (2008) <doi:10.1186/1471-2105-9-14> and Binder et al. (2009) <doi:10.1093/bioinformatics/btp088>.
This package provides functions for microbiome data analysis that take into account its compositional nature. Performs variable selection through penalized regression for both, cross-sectional and longitudinal studies, and for binary and continuous outcomes.
This package provides a tool for easily matching spatial data when you have a list of place/region names. You might have a data frame that came from a spreadsheet tracking some data by suburb or state. This package can convert it into a spatial data frame ready for plotting. The actual map data is provided by other packages (or your own code).
Fits a variety of cure models using excess hazard modeling methodology such as the mixture model proposed by Phillips et al. (2002) <doi:10.1002/sim.1101> The Weibull distribution is used to represent the survival function of the uncured patients; Fits also non-mixture cure model such as the time-to-null excess hazard model proposed by Boussari et al. (2020) <doi:10.1111/biom.13361>.
Set of methods to constrain numerical series and time series within arbitrary boundaries.
Formal psychological models of categorization and learning, independently-replicated data sets against which to test them, and simulation archives.
Canonical correlation analysis and maximum correlation via projection pursuit, as well as fast implementations of correlation estimators, with a focus on robust and nonparametric methods.
Use machine learning algorithms and advanced geographic information system tools to build Species Distribution Modeling in a extensible and modern fashion.
This project provides a group of new functions to calculate the outputs of the two main components of the Canadian Forest Fire Danger Rating System (CFFDRS) Van Wagner and Pickett (1985) <https://ostrnrcan-dostrncan.canada.ca/entities/publication/29706108-2891-4e5d-a59a-a77c96bc507c>) at various time scales: the Fire Weather Index (FWI) System Wan Wagner (1985) <https://ostrnrcan-dostrncan.canada.ca/entities/publication/d96e56aa-e836-4394-ba29-3afe91c3aa6c> and the Fire Behaviour Prediction (FBP) System Forestry Canada Fire Danger Group (1992) <https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/10068.pdf>. Some functions have two versions, table and raster based.
Includes the 100 datasets simulated by Congreve and Lamsdell (2016) <doi:10.1111/pala.12236>, and analyses of the partition and quartet distance of reconstructed trees from the generative tree, as analysed by Smith (2019) <doi:10.1098/rsbl.2018.0632>.
This package contains the Multi-Species Acute Toxicity Database (CAS & SMILES columns only) [United States (US) Department of Health and Human Services (DHHS) National Institutes of Health (NIH) National Cancer Institute (NCI), "Multi-Species Acute Toxicity Database", <https://cactus.nci.nih.gov/download/acute-toxicity-db/>] combined with the Toxic Substances Control Act (TSCA) Inventory [United States Environmental Protection Agency (US EPA), "Toxic Substances Control Act (TSCA) Chemical Substance Inventory", <https://www.epa.gov/tsca-inventory/how-access-tsca-inventory
Find multiple solutions of a nonlinear least squares problem. Cluster Gauss-Newton method does not assume uniqueness of the solution of the nonlinear least squares problem and compute multiple minimizers. Please cite the following paper when this software is used in your research: Aoki et al. (2020) <doi:10.1007/s11081-020-09571-2>. Cluster Gaussâ Newton method. Optimization and Engineering, 1-31. Please cite the following paper when profile likelihood plot is drawn with this software and used in your research: Aoki and Sugiyama (2024) <doi:10.1002/psp4.13055>. Cluster Gauss-Newton method for a quick approximation of profile likelihood: With application to physiologically-based pharmacokinetic models. CPT Pharmacometrics Syst Pharmacol.13(1):54-67. GPT based helper bot available at <https://chatgpt.com/g/g-684936db9e748191a2796debb00cd755-cluster-gauss-newton-method-helper-bot> .
Multivariate random forests with compositional responses and Euclidean predictors is performed. The compositional data are first transformed using the additive log-ratio transformation, or the alpha-transformation of Tsagris, Preston and Wood (2011), <doi:10.48550/arXiv.1106.1451>, and then the multivariate random forest of Rahman R., Otridge J. and Pal R. (2017), <doi:10.1093/bioinformatics/btw765>, is applied.
This package provides a comprehensive toolkit for generating continuous test norms in psychometrics and biometrics, and analyzing model fit. The package offers both distribution-free modeling using Taylor polynomials and parametric modeling using the beta-binomial and the Sinh-Arcsinh distribution. Originally developed for achievement tests, it is applicable to a wide range of mental, physical, or other test scores dependent on continuous or discrete explanatory variables. The package provides several advantages: It minimizes deviations from representativeness in subsamples, interpolates between discrete levels of explanatory variables, and significantly reduces the required sample size compared to conventional norming per age group. cNORM enables graphical and analytical evaluation of model fit, accommodates a wide range of scales including those with negative and descending values, and even supports conventional norming. It generates norm tables including confidence intervals. It also includes methods for addressing representativeness issues through Iterative Proportional Fitting. Based on Lenhard et al. (2016) <doi:10.1177/1073191116656437>, Lenhard et al. (2019) <doi:10.1371/journal.pone.0222279>, Lenhard and Lenhard (2021) <doi:10.1177/0013164420928457> and Gary et al. (2023) <doi:10.1007/s00181-023-02456-0>.
Statistical downscaling and bias correction (model output statistics) method based on cumulative distribution functions (CDF) transformation. See Michelangeli, Vrac, Loukos (2009) Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophysical Research Letters, 36, L11708, <doi:10.1029/2009GL038401>. ; and Vrac, Drobinski, Merlo, Herrmann, Lavaysse, Li, Somot (2012) Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat. Hazards Earth Syst. Sci., 12, 2769-2784, www.nat-hazards-earth-syst-sci.net/12/2769/2012/, <doi:10.5194/nhess-12-2769-2012>.
This package provides different datasets parsed from Drugbank <https://www.drugbank.ca/covid-19> database using dbparser package. It is a smaller version from dbdataset package. It contains only information about COVID-19 possible treatment.
Composite likelihood parameter estimate and asymptotic covariance matrix are calculated for the spatial ordinal data with replications, where spatial ordinal response with covariate and both spatial exponential covariance within subject and independent and identically distributed measurement error. Parameter estimation can be performed by either solving the gradient function or maximizing composite log-likelihood. Parametric bootstrapping is used to estimate the Godambe information matrix and hence the asymptotic standard error and covariance matrix with parallel processing option. Moreover, the proposed surrogate residual, which extends the results of Liu and Zhang (2017) <doi: 10.1080/01621459.2017.1292915>, can act as a useful tool for model diagnostics.
An R client for the currencyapi.com currency conversion API. The API requires registration of an API key. Basic features are free, some require a paid subscription. You can find the full API documentation at <https://currencyapi.com/docs> .
This package provides a one-stop shop for intuitive and dependency-free color and palette creation and modification. Includes palettes and functionality from popular packages such as viridis', RColorBrewer', and base R grDevices', as well as ggplot2 plot bindings. Users can generate perceptually uniform and colorblind-friendly palettes, adjust palettes in HSL and RGB color spaces, map color gradients to value ranges, and create color-generating functions.