Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a data package containing summarized Illumina 450k array data on 2800 samples and summarized EPIC data for 2620 samples. The data can be use as a background data set in the interactive application.
The project is intended to support the use of sequins(synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard library for quantitative analysis, modelling, and visualization of spike-in controls.
The package implements a method for normalising microarray intensities, and works for single- and multiple-color arrays. It can also be used for data from other technologies, as long as they have similar format. The method uses a robust variant of the maximum-likelihood estimator for an additive-multiplicative error model and affine calibration. The model incorporates data calibration step (a.k.a. normalization), a model for the dependence of the variance on the mean intensity and a variance stabilizing data transformation. Differences between transformed intensities are analogous to "normalized log-ratios". However, in contrast to the latter, their variance is independent of the mean, and they are usually more sensitive and specific in detecting differential transcription.
This package provides tools for estimating variance-mean dependence in count data from high-throughput genetic sequencing assays and for testing for differential expression based on a model using the negative binomial distribution.
This package provides tools for finding bumps in genomic data in order to identify differentially methylated regions in epigenetic epidemiology studies.
This package contains methods for converting standard objects constructed by bioinformatics packages, especially those in Bioconductor, and converting them to tidy data. It thus serves as a complement to the broom package, and follows the same tidy, augment, glance division of tidying methods. Tidying data makes it easy to recombine, reshape and visualize bioinformatics analyses.
This package provides tools for large-scale identification and advanced visualization of sets of conserved noncoding elements.
This package provides Affymetrix HG-U133A Array annotation data (chip hgu133a) assembled using data from public repositories.
This package provides repository information for the appropriate version of Bioconductor.
This package provides examples and code that make use of the different graph related packages produced by Bioconductor.
This package provides a multivariate inferential analysis method for detecting differentially expressed genes in gene expression data. It uses artificial components, close to the data's principal components but with an exact interpretation in terms of differential genetic expression, to identify differentially expressed genes while controlling the false discovery rate (FDR).
This package provides datasets needed for ChAMP including a test dataset and blood controls for CNA analysis.
The msa package provides a unified R/Bioconductor interface to the multiple sequence alignment algorithms ClustalW, ClustalOmega, and Muscle. All three algorithms are integrated in the package, therefore, they do not depend on any external software tools and are available for all major platforms. The multiple sequence alignment algorithms are complemented by a function for pretty-printing multiple sequence alignments using the LaTeX package TeXshade.
This package contains microarray gene expression data on 57 bladder samples from 5 batches. The data are used as an illustrative example for the sva package.
The two main functions in the package are pairwiseAlignment and stringDist. The former solves (Needleman-Wunsch) global alignment, (Smith-Waterman) local alignment, and (ends-free) overlap alignment problems. The latter computes the Levenshtein edit distance or pairwise alignment score matrix for a set of strings.
This package provides tools to display a rectangular heatmap (intensity plot) of a data matrix. By default, both samples (columns) and features (row) of the matrix are sorted according to a hierarchical clustering, and the corresponding dendrogram is plotted. Optionally, panels with additional information about samples and features can be added to the plot.
This package provides functions for performing print-run and array level quality assessment.
This package provides a function to infer pathway activity from gene expression. It contains the linear model inferred in the publication "Perturbation-response genes reveal signaling footprints in cancer gene expression".
The package provides functionality that can be useful for the analysis of the high-density tiling microarray data (such as from Affymetrix genechips) or for measuring the transcript abundance and the architecture. The main functionalities of the package are:
the class segmentation for representing partitionings of a linear series of data;
the function segment for fitting piecewise constant models using a dynamic programming algorithm that is both fast and exact;
the function
confintfor calculating confidence intervals using thestrucchangepackage;the function
plotAlongChromfor generating pretty plots;the function
normalizeByReferencefor probe-sequence dependent response adjustment from a (set of) reference hybridizations.
In this package, a Hidden Semi Markov Model (HSMM) and one homogeneous segmentation model are designed and implemented for segmentation genomic data, with the aim of assisting in transcripts detection using high throughput technology like RNA-seq or tiling array, and copy number analysis using aCGH or sequencing.
This package contains functions for the efficient design of factorial two-colour microarray experiments and for the statistical analysis of factorial microarray data.
This package provides infrastructure for parallel computations distributed by file or by range. User defined mapper and reducer functions provide added flexibility for data combination and manipulation.
This package provides fast maximum-likelihood phylogeny inference from noisy single-cell data using the ScisTree algorithm proposed by doi.org/10.1093/bioinformatics/btz676, Yufeng Wu (2019). It makes the method applicable to massive single-cell datasets (>10,000 cells).
This package contains data and functions that define and allow translation between different chromosome sequence naming conventions (e.g., "chr1" versus "1"), including a function that attempts to place sequence names in their natural, rather than lexicographic, order.