Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to import multiple files of multiple data file types ('.xlsx', .xls', .csv', .txt') from a given directory into R data frames.
This package implements the distribution-free goodness-of-fit regression test for the mean structure of parametric models introduced in Khmaladze (2021) <doi:10.1007/s10463-021-00786-3>. The test is implemented for general functions with minimal distributional assumptions as well as common models (e.g., lm, glm) with the usual assumptions.
This package performs Diallel Analysis with R using Griffing's and Hayman's approaches. Four different Methods (1: Method-I (Parents + F1's + reciprocals); 2: Method-II (Parents and one set of F1's); 3: Method-III (One set of F1's and reciprocals); 4: Method-IV (One set of F1's only)) and two Models (1: Fixed Effects Model; 2: Random Effects Model) can be applied using Griffing's approach.
Populate data from an R environment into .doc and .docx templates. Create a template document in a program such as Word', and add strings encased in guillemet characters to create flags («example»). Use getDictionary() to create a dictionary of flags and replacement values, then call docket() to generate a populated document.
This package provides external JAR dependencies for the DatabaseConnector package.
An implementation of major general-purpose mechanisms for privatizing statistics, models, and machine learners, within the framework of differential privacy of Dwork et al. (2006) <doi:10.1007/11681878_14>. Example mechanisms include the Laplace mechanism for releasing numeric aggregates, and the exponential mechanism for releasing set elements. A sensitivity sampler (Rubinstein & Alda, 2017) <arXiv:1706.02562> permits sampling target non-private function sensitivity; combined with the generic mechanisms, it permits turn-key privatization of arbitrary programs.
This package provides a Natural Language Processing Model trained to detect directness and intensity during conflict. See <https://www.mikeyeomans.info>.
This package implements the doubly robust distribution balancing weighting proposed by Katsumata (2024) <doi:10.1017/psrm.2024.23>, which improves the augmented inverse probability weighting (AIPW) by estimating propensity scores with estimating equations suitable for the pre-specified parameter of interest (e.g., the average treatment effects or the average treatment effects on the treated) and estimating outcome models with the estimated inverse probability weights. It also implements the covariate balancing propensity score proposed by Imai and Ratkovic (2014) <doi:10.1111/rssb.12027> and the entropy balancing weighting proposed by Hainmueller (2012) <doi:10.1093/pan/mpr025>, both of which use covariate balancing conditions in propensity score estimation. The point estimate of the parameter of interest and its uncertainty as well as coefficients for propensity score estimation and outcome regression are produced using the M-estimation. The same functions can be used to estimate average outcomes in missing outcome cases.
Real life data is muddy, fuzzy and unpredictable. This makes data manipulations tedious and bringing the data to right shape alone is a major chunk of work. Functions in this package help us get an understanding of dataframes to dramatically reduces data coding time.
This package implements the algorithm described in Jun Li and Alicia T. Lamere, "DiPhiSeq: Robust comparison of expression levels on RNA-Seq data with large sample sizes" (Unpublished). Detects not only genes that show different average expressions ("differential expression", DE), but also genes that show different diversities of expressions in different groups ("differentially dispersed", DD). DD genes can be important clinical markers. DiPhiSeq uses a redescending penalty on the quasi-likelihood function, and thus has superior robustness against outliers and other noise. Updates from version 0.1.0: (1) Added the option of using adaptive initial value for phi. (2) Added a function for estimating the proportion of outliers in the data. (3) Modified the input parameter names for clarity, and modified the output format for the main function.
Implementations of several multiple testing procedures that control the family-wise error rate (FWER) designed specifically for discrete tests. Included are discrete adaptations of the Bonferroni, Holm, Hochberg and Šidák procedures as described in the papers Döhler (2010) "Validation of credit default probabilities using multiple-testing procedures" <doi:10.21314/JRMV.2010.062> and Zhu & Guo (2019) "Family-Wise Error Rate Controlling Procedures for Discrete Data" <doi:10.1080/19466315.2019.1654912>. The main procedures of this package take as input the results of a test procedure from package DiscreteTests or a set of observed p-values and their discrete support under their nulls. A shortcut function to apply discrete procedures directly to data is also provided.
Dynamic linear models and time series regression.
This package contains functions for the MCMC simulation of dyadic network models j2 (Zijlstra, 2017, <doi:10.1080/0022250X.2017.1387858>) and p2 (Van Duijn, Snijders & Zijlstra, 2004, <doi: 10.1046/j.0039-0402.2003.00258.x>), the multilevel p2 model (Zijlstra, Van Duijn & Snijders (2009) <doi: 10.1348/000711007X255336>), and the bidirectional (multilevel) counterpart of the the multilevel p2 model as described in Zijlstra, Van Duijn & Snijders (2009) <doi: 10.1348/000711007X255336>, the (multilevel) b2 model.
Open, read data from and modify Data Packages. Data Packages are an open standard for bundling and describing data sets (<https://datapackage.org>). When data is read from a Data Package care is taken to convert the data as much a possible to R appropriate data types. The package can be extended with plugins for additional data types.
DAGs With Omitted Objects Displayed (DAGWOOD) is a framework to help reveal key hidden assumptions in a causal DAG. This package provides an implementation of the DAGWOOD algorithm. Further description can be found in Haber et al (2022) <DOI:10.1016/j.annepidem.2022.01.001>.
Written to help undergraduate as well as graduate students to get started with R for basic econometrics without the need to import specific functions and datasets from many different sources. Primarily, the package is meant to accompany the German textbook Auer, L.v., Hoffmann, S., Kranz, T. (2024, ISBN: 978-3-662-68263-0) from which the exercises cover all the topics from the textbook Auer, L.v. (2023, ISBN: 978-3-658-42699-6).
Interface with the Dat p2p network protocol <https://datproject.org>. Clone archives from the network, share your own files, and install packages from the network.
Rare variant association test integrating variant position information. It aims to identify the presence of clusters of disease-risk variants in specific gene regions. For more details, please read the publication from Persyn et al. (2017) <doi:10.1371/journal.pone.0179364>.
This package provides a comprehensive framework for early epidemic detection through school absenteeism surveillance. The package offers three core functionalities: (1) simulation of population structures, epidemic spread, and resulting school absenteeism patterns; (2) implementation of surveillance models that generate alerts for impending epidemics based on absenteeism data and (3) evaluation of alert timeliness and accuracy through alert time quality metrics to optimize model parameters. These tools enable public health officials and researchers to develop and assess early warning systems before implementation. Methods are based on research published in Vanderkruk et al. (2023) <doi:10.1186/s12889-023-15747-z> and Ward et al. (2019) <doi:10.1186/s12889-019-7521-7>.
This package provides a collection of utility functions.
This package provides a wide collection of univariate discrete data sets from various applied domains related to distribution theory. The functions allow quick, easy, and efficient access to 100 univariate discrete data sets. The data are related to different applied domains, including medical, reliability analysis, engineering, manufacturing, occupational safety, geological sciences, terrorism, psychology, agriculture, environmental sciences, road traffic accidents, demography, actuarial science, law, and justice. The documentation, along with associated references for further details and uses, is presented.
Fast C++ implementation of Dynamic Time Warping for time series dissimilarity analysis, with applications in environmental monitoring and sensor data analysis, climate science, signal processing and pattern recognition, and financial data analysis. Built upon the ideas presented in Benito and Birks (2020) <doi:10.1111/ecog.04895>, provides tools for analyzing time series of varying lengths and structures, including irregular multivariate time series. Key features include individual variable contribution analysis, restricted permutation tests for statistical significance, and imputation of missing data via GAMs. Additionally, the package provides an ample set of tools to prepare and manage time series data.
The method of synthetic controls is a widely-adopted tool for evaluating causal effects of policy changes in settings with observational data. In many settings where it is applicable, researchers want to identify causal effects of policy changes on a treated unit at an aggregate level while having access to data at a finer granularity. This package implements a simple extension of the synthetic controls estimator, developed in Gunsilius (2023) <doi:10.3982/ECTA18260>, that takes advantage of this additional structure and provides nonparametric estimates of the heterogeneity within the aggregate unit. The idea is to replicate the quantile function associated with the treated unit by a weighted average of quantile functions of the control units. The package contains tools for aggregating and plotting the resulting distributional estimates, as well as for carrying out inference on them.
When visualising changes between two values over time, a strict linear interpolation can look jarring and unnatural. By applying a non-linear easing to the transition, the motion between values can appear smoother and more natural. This package includes functions for applying such non-linear easings to colors and numeric values, and is useful where smooth animated movement and transitions are desired.