This package provides a method to visualize pharmacometric analyses which are impacted by covariate effects. Variability-aligned covariate harmonized-effects and time-transformation equivalent ('vachette') facilitates intuitive overlays of data and model predictions, allowing for comprehensive comparison without dilution effects. vachette improves upon previous methods Lommerse et al. (2021) <doi:10.1002/psp4.12679>, enabling its application to all pharmacometric models and enhancing Visual Predictive Checks (VPC) by integrating data into cohesive plots that can highlight model misspecification.
Given a set of genomic sites/regions (e.g. ChIP-seq peaks, CpGs, differentially methylated CpGs or regions, SNPs, etc.) it is often of interest to investigate the intersecting genomic annotations. Such annotations include those relating to gene models (promoters, 5'UTRs, exons, introns, and 3'UTRs), CpGs (CpG islands, CpG shores, CpG shelves), or regulatory sequences such as enhancers. The annotatr package provides an easy way to summarize and visualize the intersection of genomic sites/regions with genomic annotations.
The package contains functions to infer and visualize cell cycle process using Single-cell RNA-Seq data. It exploits the idea of transfer learning, projecting new data to the previous learned biologically interpretable space. The tricycle provides a pre-learned cell cycle space, which could be used to infer cell cycle time of human and mouse single cell samples. In addition, it also offer functions to visualize cell cycle time on different embeddings and functions to build new reference.
This package provides a small collection of interesting and educational machine learning data sets which are used as examples in the mlr3 book Applied machine learning using mlr3 in R https://mlr3book.mlr-org.com, the use case gallery https://mlr3gallery.mlr-org.com, or in other examples. All data sets are properly preprocessed and ready to be analyzed by most machine learning algorithms. Data sets are automatically added to the dictionary of tasks if mlr3 is loaded.
This package provides portable tools to run system processes in the background. It can check if a background process is running; wait on a background process to finish; get the exit status of finished processes; kill background processes and their children; restart processes. It can read the standard output and error of the processes, using non-blocking connections. processx can poll a process for standard output or error, with a timeout. It can also poll several processes at once.
To implement disease ontology (DO) enrichment analysis, this package is designed and presents a double weighted model based on the latest annotations of the human genome with DO terms, by integrating the DO graph topology on a global scale. This package exhibits high accuracy that it can identify more specific DO terms, which alleviates the over enriched problem. The package includes various statistical models and visualization schemes for discovering the associations between genes and diseases from biological big data.
This package is a Shiny app for interactively analyzing and visualizing Nanostring GeoMX Whole Transcriptome Atlas data. Users have the option of exploring a sample data to explore this app's functionality. Regions of interest (ROIs) can be filtered based on any user-provided metadata. Upon taking two or more groups of interest, all pairwise and ANOVA-like testing are automatically performed. Available ouputs include PCA, Volcano plots, tables and heatmaps. Aesthetics of each output are highly customizable.
This package provides several methods for aggregating probabilistic forecasts. You have a group of people who have made probabilistic forecasts for the same event. You want to take advantage of the "wisdom of the crowd" and combine these forecasts in some sensible way. This package provides implementations of several strategies, including geometric mean of odds, an extremized aggregate (Neyman, Roughgarden (2021) <doi:10.1145/3490486.3538243>), and "high-density trimmed mean" (Powell et al. (2022) <doi:10.1037/dec0000191>).
This package provides methods and plotting functions for displaying categorical data on an interactive heatmap using plotly'. Provides functionality for strictly categorical heatmaps, heatmaps illustrating categorized continuous data and annotated heatmaps. Also, there are various options to interact with the x-axis to prevent overlapping axis labels, e.g. via simple sliders or range sliders. Besides the viewer pane, resulting plots can be saved as a standalone HTML file, embedded in R Markdown documents or in a Shiny app.
Proposed by Harrell, the C index or concordance C, is considered an overall measure of discrimination in survival analysis between a survival outcome that is possibly right censored and a predictive-score variable, which can represent a measured biomarker or a composite-score output from an algorithm that combines multiple biomarkers. This package aims to statistically compare two C indices with right-censored survival outcome, which commonly arise from a paired design and thus resulting two correlated C indices.
Density function and generation of random variables from the Generalized Inverse Normal (GIN) distribution from Robert (1991) <doi:10.1016/0167-7152(91)90174-P>. Also provides density functions and generation from the GIN distribution truncated to positive or negative reals. Theoretical guarantees supporting the sampling algorithms and an application to Bayesian estimation of network formation models can be found in the working paper Ding, Estrada and Montoya-Blandón (2023) <https://www.smontoyablandon.com/publication/networks/network_externalities.pdf>.
This package provides a lightweight fork of gMCP with functions for graphical described multiple test procedures introduced in Bretz et al. (2009) <doi:10.1002/sim.3495> and Bretz et al. (2011) <doi:10.1002/bimj.201000239>. Implements a flexible function using ggplot2 to create multiplicity graph visualizations. Contains instructions of multiplicity graph and graphical testing for group sequential design, described in Maurer and Bretz (2013) <doi:10.1080/19466315.2013.807748>, with necessary unit testing using testthat'.
An implementation of randomization-based hypothesis testing for three different estimands in a cluster-randomized encouragement experiment. The three estimands include (1) testing a cluster-level constant proportional treatment effect (Fisher's sharp null hypothesis), (2) pooled effect ratio, and (3) average cluster effect ratio. To test the third estimand, user needs to install Gurobi (>= 9.0.1) optimizer via its R API. Please refer to <https://www.gurobi.com/documentation/9.0/refman/ins_the_r_package.html>.
Fitting dimension reduction methods to data lying on two-dimensional sphere. This package provides principal geodesic analysis, principal circle, principal curves proposed by Hauberg, and spherical principal curves. Moreover, it offers the method of locally defined principal geodesics which is underway. The detailed procedures are described in Lee, J., Kim, J.-H. and Oh, H.-S. (2021) <doi:10.1109/TPAMI.2020.3025327>. Also see Kim, J.-H., Lee, J. and Oh, H.-S. (2020) <arXiv:2003.02578>.
The main function is icweib(), which fits a stratified Weibull proportional hazards model for left censored, right censored, interval censored, and non-censored survival data. We parameterize the Weibull regression model so that it allows a stratum-specific baseline hazard function, but where the effects of other covariates are assumed to be constant across strata. Please refer to Xiangdong Gu, David Shapiro, Michael D. Hughes and Raji Balasubramanian (2014) <doi:10.32614/RJ-2014-003> for more details.
Geostatistical modeling and kriging with gridded data using spatially separable covariance functions (Kronecker covariances). Kronecker products in these models provide shortcuts for solving large matrix problems in likelihood and conditional mean, making snapKrig computationally efficient with large grids. The package supplies its own S3 grid object class, and a host of methods including plot, print, Ops, square bracket replace/assign, and more. Our computational methods are described in Koch, Lele, Lewis (2020) <doi:10.7939/r3-g6qb-bq70>.
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.
Calculates maximum likelihood estimate, exact and asymptotic confidence intervals, and exact and asymptotic goodness of fit p-values for concentration of infectious units from serial limiting dilution assays. This package uses the likelihood equation, exact goodness of fit p-values, and exact confidence intervals described in Meyers et al. (1994) <http://jcm.asm.org/content/32/3/732.full.pdf>. This software is also implemented as a web application through the Shiny R package <https://iupm.shinyapps.io/sldassay/>.
Declare data validation rules and data quality indicators; confront data with them and analyze or visualize the results. The package supports rules that are per-field, in-record, cross-record or cross-dataset. Rules can be automatically analyzed for rule type and connectivity. Supports checks implied by an SDMX DSD file as well. See also Van der Loo and De Jonge (2018) <doi:10.1002/9781118897126>, Chapter 6 and the JSS paper (2021) <doi:10.18637/jss.v097.i10>.
This package is an R package dedicated to the analysis of (multiplexed) 4C sequencing data. r-fourcseq provides a pipeline to detect specific interactions between DNA elements and identify differential interactions between conditions. The statistical analysis in R starts with individual bam files for each sample as inputs. To obtain these files, the package contains a Python script to demultiplex libraries and trim off primer sequences. With a standard alignment software the required bam files can be then be generated.
The S4Arrays package defines the Array virtual class to be extended by other S4 classes that wish to implement a container with an array-like semantic. It also provides:
low-level functionality meant to help the developer of such container to implement basic operations like display, subsetting, or coercion of their array-like objects to an ordinary matrix or array, and
a framework that facilitates block processing of array-like objects (typically on-disk objects).
This package provides tools to compares k samples using the Anderson-Darling test, Kruskal-Wallis type tests with different rank score criteria, Steel's multiple comparison test, and the Jonckheere-Terpstra (JT) test. It computes asymptotic, simulated or (limited) exact P-values, all valid under randomization, with or without ties, or conditionally under random sampling from populations, given the observed tie pattern. Except for Steel's test and the JT test it also combines these tests across several blocks of samples.
LIONESS, or Linear Interpolation to Obtain Network Estimates for Single Samples, can be used to reconstruct single-sample networks (https://arxiv.org/abs/1505.06440). This code implements the LIONESS equation in the lioness function in R to reconstruct single-sample networks. The default network reconstruction method we use is based on Pearson correlation. However, lionessR can run on any network reconstruction algorithms that returns a complete, weighted adjacency matrix. lionessR works for both unipartite and bipartite networks.
This package provides a set of user-friendly functions to aid in organizing, plotting and analyzing event-related potential (ERP) data. Provides an easy-to-learn method to explore ERP data. Should be useful to those without a background in computer programming, and to those who are new to ERPs (or new to the more advanced ERP software available). Emphasis has been placed on highly automated processes using functions with as few arguments as possible. Expects processed (cleaned) data.