Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides full genome sequences for Mus musculus (Mouse) as provided by UCSC (mm10, December 2011) and stored in Biostrings objects.
This is a package for identification of metabolites using high precision mass spectrometry. MS peaks are used to derive a ranked list of sum formulae, alternatively for a given sum formula the theoretical isotope distribution can be calculated to search in MS peak lists.
This package provides methods for visualizing large multivariate datasets using static and interactive scatterplot matrices, parallel coordinate plots, volcano plots, and litre plots. It includes examples for visualizing RNA-sequencing datasets and differentially expressed genes.
This package provides methods and functionality to analyze flow data that is beyond the basic infrastructure provided by the flowCore package.
This package provides a enhanced visualization of single-cell data based on gene-weighted density estimation. Nebulosa recovers the signal from dropped-out features and allows the inspection of the joint expression from multiple features (e.g. genes). Seurat and SingleCellExperiment objects can be used within Nebulosa.
This package muscat provides various methods and visualization tools for DS(differential splicing) analysis in multi-sample, multi-group, multi-(cell-)subpopulation scRNA-seq data, including cell-level mixed models and methods based on aggregated "pseudobulk" data, as well as a flexible simulation platform that mimics both single and multi-sample scRNA-seq data.
seqLogo takes the position weight matrix of a DNA sequence motif and plots the corresponding sequence logo as introduced by Schneider and Stephens (1990).
This package provides a framework for the visualization of genome coverage profiles. It can be used for ChIP-seq experiments, but it can be also used for genome-wide nucleosome positioning experiments or other experiment types where it is important to have a framework in order to inspect how the coverage distributed across the genome.
This is a package to support identification of markers of rare cell types by looking at genes whose expression is confined in small regions of the expression space.
This package provides full genome sequences for Homo sapiens (Human) as provided by UCSC (hg19, Feb. 2009) and stored in Biostrings objects. The sequences are the same as in BSgenome.Hsapiens.UCSC.hg19, except that each of them has the 4 following masks on top: (1) the mask of assembly gaps (AGAPS mask), (2) the mask of intra-contig ambiguities (AMB mask), (3) the mask of repeats from RepeatMasker (RM mask), and (4) the mask of repeats from Tandem Repeats Finder (TRF mask). Only the AGAPS and AMB masks are "active" by default.
This package provides a class and subclasses for storing non-scalar objects in matrix entries. This is akin to a ragged array but the raggedness is in the third dimension, much like a bumpy surface--hence the name. Of particular interest is the BumpyDataFrameMatrix, where each entry is a Bioconductor data frame. This allows us to naturally represent multivariate data in a format that is compatible with two-dimensional containers like the SummarizedExperiment and MultiAssayExperiment objects.
This package provides RcisTarget databases: Gene-based motif rankings and annotation to transcription factors. This package contains a subset of 4.6k motifs (cisbp motifs), scored only within 500bp upstream and the TSS. See RcisTarget tutorial to download the full databases, containing 20k motifs and search space up to 10kbp around the TSS.
This is an R package for interfacing with the BIOM format. This package includes basic tools for reading biom-format files, accessing and subsetting data tables from a biom object (which is more complex than a single table), as well as limited support for writing a biom-object back to a biom-format file. The design of this API is intended to match the Python API and other tools included with the biom-format project, but with a decidedly "R flavor" that should be familiar to R users. This includes S4 classes and methods, as well as extensions of common core functions/methods.
This package provides a collection of tools for doing various analyses of single-cell RNA-seq gene expression data, with a focus on quality control.
This package provides methods for working with Illumina arrays using the gdsfmt package.
This package provides platform design info for Affymetrix Mapping50K_Xba240 (pd.mapping50k.xba240).
This R package provides tools for handling genomic interaction data, such as ChIA-PET/Hi-C, annotating genomic features with interaction information and producing various plots and statistics.
This package is focused on finding differential exon usage using RNA-seq exon counts between samples with different experimental designs. It provides functions that allows the user to make the necessary statistical tests based on a model that uses the negative binomial distribution to estimate the variance between biological replicates and generalized linear models for testing. The package also provides functions for the visualization and exploration of the results.
FlowSOM offers visualization options for cytometry data, by using self-organizing map clustering and minimal spanning trees.
This is a package for saving SingleCellExperiment into file artifacts, and loading them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
MDQC is a multivariate quality assessment method for microarrays based on quality control (QC) reports. The Mahalanobis distance of an array's quality attributes is used to measure the similarity of the quality of that array against the quality of the other arrays. Then, arrays with unusually high distances can be flagged as potentially low-quality.
The package implements an algorithm for fast gene set enrichment analysis. Using the fast algorithm makes more permutations and gets more fine grained p-values, which allows using accurate standard approaches to multiple hypothesis correction.
This package provides basic features for the automated analysis of Affymetrix arrays.
This package is used to detect combination of genomic coordinates falling within a user defined window size along with user defined overlap between identified neighboring clusters. It can be used for genomic data where the clusters are built on a specific chromosome or specific strand. Clustering can be performed with a "greedy" option allowing thus the presence of additional sites within the allowed window size.