Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to randomly select, return, and print quotes or entire scenes from the American version of the show the Office. Receive laughs from one of of the greatest sitcoms of all time on demand. Add these functions to your .Rprofile to get a good laugh everytime you start a new R session.
This package implements the locally efficient doubly robust difference-in-differences (DiD) estimators for the average treatment effect proposed by Sant'Anna and Zhao (2020) <doi:10.1016/j.jeconom.2020.06.003>. The estimator combines inverse probability weighting and outcome regression estimators (also implemented in the package) to form estimators with more attractive statistical properties. Two different estimation methods can be used to estimate the nuisance functions.
This package provides a suite of functions for analyzing and visualizing the health economic outputs of mathematical models. This package was developed with funding from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health under award no. R01AI138783. The content of this package is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The theoretical underpinnings of dampack''s functionality are detailed in Hunink et al. (2014) <doi:10.1017/CBO9781139506779>.
This package provides methods for estimating multi-stage optimal dynamic treatment regimes for survival outcomes with dependent censoring. Cho, H., Holloway, S. T., and Kosorok, M. R. (2022) <doi:10.1093/biomet/asac047>.
This package provides a Bayesian clustering method for replicated time series or replicated measurements from multiple experimental conditions, e.g., time-course gene expression data. It estimates the number of clusters directly from the data using a Dirichlet-process prior. See Fu, A. Q., Russell, S., Bray, S. and Tavare, S. (2013) Bayesian clustering of replicated time-course gene expression data with weak signals. The Annals of Applied Statistics. 7(3) 1334-1361. <doi:10.1214/13-AOAS650>.
The Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution is a new distribution for count data analysis. The DTGIW is discrete distribution based on Atchanut and Sirinapa (2021). <DOI: 10.14456/sjst-psu.2021.149>.
Computes dynamical correlation estimates and percentile bootstrap confidence intervals for pairs of longitudinal responses, including consideration of lags and derivatives.
Allows to visualize high-density electroencephalography (HD-EEG) data through interactive plots and animations, enabling exploratory and communicative analysis of temporal-spatial brain signals. Funder: Masaryk University (Grant No. MUNI/A/1457/2023).
This package performs analysis of popular experimental designs used in the field of biological research. The designs covered are completely randomized design, randomized complete block design, factorial completely randomized design, factorial randomized complete block design, split plot design, strip plot design and latin square design. The analysis include analysis of variance, coefficient of determination, normality test of residuals, standard error of mean, standard error of difference and multiple comparison test of means. The package has functions for transformation of data and yield data conversion. Some datasets are also added in order to facilitate examples.
This package provides a system for the management, assessment, and psychometric analysis of data from educational and psychological tests.
This is the companion package to the Data Visualization Geometries Encyclopedia, providing seamless access to the associated data.
Returns dynamic fit index (DFI) cutoffs for latent variable models that are tailored to the user's model statement, model type, and sample size. This is the counterpart of the Shiny Application, <https://dynamicfit.app>.
Gumbel distribution functions (De Haan L. (2007) <doi:10.1007/0-387-34471-3>) implemented with the techniques of automatic differentiation (Griewank A. (2008) <isbn:978-0-89871-659-7>). With this tool, a user should be able to quickly model extreme events for which the Gumbel distribution is the domain of attraction. The package makes available the density function, the distribution function the quantile function and a random generating function. In addition, it supports gradient functions. The package combines Adept (C++ templated automatic differentiation) (Hogan R. (2017) <doi:10.5281/zenodo.1004730>) and Eigen (templated matrix-vector library) for fast computations of both objective functions and exact gradients. It relies on RcppEigen for easy access to Eigen and bindings to R.
Calculates various estimates for measures of educational differentials, the relative importance of primary and secondary effects in the creation of such differentials and compares the estimates obtained from two datasets.
Testing and documenting code that communicates with remote databases can be painful. Although the interaction with R is usually relatively simple (e.g. data(frames) passed to and from a database), because they rely on a separate service and the data there, testing them can be difficult to set up, unsustainable in a continuous integration environment, or impossible without replicating an entire production cluster. This package addresses that by allowing you to make recordings from your database interactions and then play them back while testing (or in other contexts) all without needing to spin up or have access to the database your code would typically connect to.
This package provides sample size and power calculations when the treatment time-lag effect is present and the lag duration is either homogeneous across the individual subject, or varies heterogeneously from individual to individual within a certain domain and following a specific pattern. The methods used are described in Xu, Z., Zhen, B., Park, Y., & Zhu, B. (2017) <doi:10.1002/sim.7157>.
This package contains functions to perform copula estimation by the non-parametric Bayesian method, Dirichlet-based Polya Tree. See Ning (2018) <doi:10.1080/00949655.2017.1421194>.
This package provides tools for detecting XOR-like patterns in variable pairs in two-class data sets. Includes visualizations for pattern exploration and reporting capabilities with both text and HTML output formats.
Access and manage the application programming interface (API) of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA) ReliefWeb disaster events at <https://reliefweb.int/disasters>. The package requires a minimal number of dependencies. It offers functionality to retrieve a user-defined sample of disaster events from ReliefWeb, providing an easy alternative to scraping the ReliefWeb website. It enables a seamless integration of regular data updates into the research work flow.
Analyzes non-verbal communication by processing data extracted from video recordings of dyadic interactions. It supports integration with open source tools, currently limited to OpenPose (Cao et al. (2019) <doi:10.1109/TPAMI.2019.2929257>), converting its outputs into CSV format for further analysis. The package includes functions for data pre-processing, visualization, and computation of motion indices such as velocity, acceleration, and jerkiness (Cook et al. (2013) <doi:10.1093/brain/awt208>), facilitating the analysis of non-verbal cues in paired interactions and contributing to research on human communication dynamics.
The D-score summarizes a child's performance on developmental milestones into a single number. Its key feature is its generic nature. The method does not depend on a specific measurement instrument. The statistical method underlying the D-score is described in van Buuren et al. (2025) <doi:10.1177/01650254241294033>. This package implements model keys to convert milestone scores to D-scores; maps instrument-specific item names to a generic 9-position naming convention; computes D-scores and their precision from a child's milestone scores; and converts D-scores to Development-for-Age Z-scores (DAZ) using age-conditional reference standards.
It generates summary statistics on the input dataset using different descriptive univariate statistical measures on entire data or at a group level. Though there are other packages which does similar job but each of these are deficient in one form or other, in the measures generated, in treating numeric, character and date variables alike, no functionality to view these measures on a group level or the way the output is represented. Given the foremost role of the descriptive statistics in any of the exploratory data analysis or solution development, there is a need for a more constructive, structured and refined version over these packages. This is the idea behind the package and it brings together all the required descriptive measures to give an initial understanding of the data quality, distribution in a faster,easier and elaborative way.The function brings an additional capability to be able to generate these statistical measures on the entire dataset or at a group level. It calculates measures of central tendency (mean, median), distribution (count, proportion), dispersion (min, max, quantile, standard deviation, variance) and shape (skewness, kurtosis). Addition to these measures, it provides information on the data type, count on no. of rows, unique entries and percentage of missing entries. More importantly the measures are generated based on the data types as required by them,rather than applying numerical measures on character and data variables and vice versa. Output as a dataframe object gives a very neat representation, which often is useful when working with a large number of columns. It can easily be exported as csv and analyzed further or presented as a summary report for the data.
Fast computation of the distance covariance dcov and distance correlation dcor'. The computation cost is only O(n log(n)) for the distance correlation (see Chaudhuri, Hu (2019) <arXiv:1810.11332> <doi:10.1016/j.csda.2019.01.016>). The functions are written entirely in C++ to speed up the computation.
Fits Bayesian additive regression trees (BART; Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>) while allowing the updating of predictors or response so that BART can be incorporated as a conditional model in a Gibbs/Metropolis-Hastings sampler. Also serves as a drop-in replacement for package BayesTree'.