Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides new types of omnibus tests which are generally much more powerful than traditional tests (including the Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling tests),see Zhang (2002) <doi:10.1111/1467-9868.00337>.
Directed Dependence Coefficient (didec) is a measure of functional dependence. Multivariate Feature Ordering by Conditional Independence (MFOCI) is a variable selection algorithm based on didec. Hierarchical Variable Clustering (VarClustPartition) is a variable clustering method based on didec. For more information, see the paper by Ansari and Fuchs (2025, <doi:10.48550/arXiv.2212.01621>), and the paper by Fuchs and Wang (2024, <doi:10.1016/j.ijar.2024.109185>).
This package implements the Improved Expectation Maximisation EM* and the traditional EM algorithm for clustering big data (gaussian mixture models for both multivariate and univariate datasets). This version implements the faster alternative-EM* that expedites convergence via structure based data segregation. The implementation supports both random and K-means++ based initialization. Reference: Parichit Sharma, Hasan Kurban, Mehmet Dalkilic (2022) <doi:10.1016/j.softx.2021.100944>. Hasan Kurban, Mark Jenne, Mehmet Dalkilic (2016) <doi:10.1007/s41060-017-0062-1>.
DataSHIELD is an infrastructure and series of R packages that enables the remote and non-disclosive analysis of sensitive research data. This DataSHIELD Interface implementation is for analyzing datasets living in the current R session. The purpose of this is primarily for lightweight DataSHIELD analysis package development.
Algorithm to handle with optimal subset selection for distributed local principal component analysis. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02331888.2020.1823979>.
To create demographic table with simple summary statistics, with optional comparison(s) over one or more groups.
This package provides the user with an interactive application which can be used to facilitate the planning of dose finding studies by applying the theory of optimal experimental design.
Hash an expression with its dependencies and store its value, reloading it from a file as long as both the expression and its dependencies stay the same.
This package provides a domain-specific language for specifying translating recursions into dynamic-programming algorithms. See <https://en.wikipedia.org/wiki/Dynamic_programming> for a description of dynamic programming.
This package provides a modified hierarchical test (Liu (2017) <doi:10.1214/17-AOS1539>) for detecting the structural difference between two Semiparametric Gaussian graphical models. The multiple testing procedure asymptotically controls the false discovery rate (FDR) at a user-specified level. To construct the test statistic, a truncated estimator is used to approximate the transformation functions and two R functions including lassoGGM() and lassoNPN() are provided to compute the lasso estimates of the regression coefficients.
Statistical inference for the regression coefficients in high-dimensional linear models with hidden confounders. The Doubly Debiased Lasso method was proposed in <arXiv:2004.03758>.
This package provides a Bayesian framework for parameter inference in differential equations. This approach offers a rigorous methodology for parameter inference as well as modeling the link between unobservable model states and parameters, and observable quantities. Provides templates for the DE model, the observation model and data likelihood, and the model parameters and their prior distributions. A Markov chain Monte Carlo (MCMC) procedure processes these inputs to estimate the posterior distributions of the parameters and any derived quantities, including the model trajectories. Further functionality is provided to facilitate MCMC diagnostics and the visualisation of the posterior distributions of model parameters and trajectories.
Discriminant Analysis (DA) for evolutionary inference (Qin, X. et al, 2020, <doi:10.22541/au.159256808.83862168>), especially for population genetic structure and community structure inference. This package incorporates the commonly used linear and non-linear, local and global supervised learning approaches (discriminant analysis), including Linear Discriminant Analysis of Kernel Principal Components (LDAKPC), Local (Fisher) Linear Discriminant Analysis (LFDA), Local (Fisher) Discriminant Analysis of Kernel Principal Components (LFDAKPC) and Kernel Local (Fisher) Discriminant Analysis (KLFDA). These discriminant analyses can be used to do ecological and evolutionary inference, including demography inference, species identification, and population/community structure inference.
Computes small-sample degrees of freedom adjustment for heteroskedasticity robust standard errors, and for clustered standard errors in linear regression. See Imbens and Kolesár (2016) <doi:10.1162/REST_a_00552> for a discussion of these adjustments.
This package creates interactive genome browser. It joins the data analysis power of R and the visualization libraries of JavaScript in one package. Barrios, D. & Prieto, C. (2017) <doi:10.1089/cmb.2016.0213>.
Estimates dose-response relations from summarized dose-response data and to combines them according to principles of (multivariate) random-effects models.
Allows clinicians and researchers to compute daily dose (and subsequently days supply) for prescription refills using the following methods: Fixed window, fixed tablet, defined daily dose (DDD), and Random Effects Warfarin Days Supply (REWarDS). Daily dose is the computed dose that the patient takes every day. For medications with fixed dosing (e.g. direct oral anticoagulants) this is known and does not need to be estimated. For medications with varying dose such as warfarin, however, the daily dose should be assumed or estimated to allow measurement of drug exposure. Daysâ supply is the number of days that patientsâ supply of medication will last after each prescription fill. Estimating daysâ supply is necessary to calculate drug exposure. The package computes daysâ supply and daily dose at both the prescription and patient levels. Results at the prescription level are denoted with â -Rx-â and those at patient level are denoted with â -Pt-â .
Various functions to import, verify, process and plot high-resolution dendrometer data using daily and stem-cycle approaches as described in Deslauriers et al, 2007 <doi:10.1016/j.dendro.2007.05.003>. For more details about the package please see: Van der Maaten et al. 2016 <doi:10.1016/j.dendro.2016.06.001>.
This package provides a versatile toolkit for analyzing and visualizing DEXi (Decision EXpert for education) decision trees, facilitating multi-criteria decision analysis directly within R. Users can read .dxi files, manipulate decision trees, and evaluate various scenarios. It supports sensitivity analysis through Monte Carlo simulations, one-at-a-time approaches, and variance-based methods, helping to discern the impact of input variations. Additionally, it includes functionalities for generating sampling plans and an array of visualization options for decision trees and analysis results. A distinctive feature is the synoptic table plot, aiding in the efficient comparison of scenarios. Whether for in-depth decision modeling or sensitivity analysis, this package stands as a comprehensive solution. Definition of sensitivity analyses available in Carpani, Bergez and Monod (2012) <doi:10.1016/j.envsoft.2011.10.002> and detailed description of the package soon available in Alaphilippe et al. (2025) <doi:10.1016/j.simpa.2024.100729>.
Three general demographic decomposition methods: Pseudo-continuous decomposition proposed by Horiuchi, Wilmoth, and Pletcher (2008) <doi:10.1353/dem.0.0033>, stepwise replacement decomposition proposed by Andreev, Shkolnikov and Begun (2002) <doi:10.4054/DemRes.2002.7.14>, and lifetable response experiments proposed by Caswell (1989) <doi:10.1016/0304-3800(89)90019-7>.
Implementations of the multiple testing procedures for discrete tests described in the paper Döhler, Durand and Roquain (2018) "New FDR bounds for discrete and heterogeneous tests" <doi:10.1214/18-EJS1441>. The main procedures of the paper (HSU and HSD), their adaptive counterparts (AHSU and AHSD), and the HBR variant are available and are coded to take as input the results of a test procedure from package DiscreteTests', or a set of observed p-values and their discrete support under their nulls. A shortcut function to obtain such p-values and supports is also provided, along with a wrapper allowing to apply discrete procedures directly to data.
This package provides functions that offer seamless D3Plus integration. The examples provided here are taken from the official D3Plus website <http://d3plus.org>.
Basic time series functionalities such as listing of missing values, application of arbitrary aggregation as well as rolling (asymmetric) window functions and automatic detection of periodicity. As it is mainly based on data.table', it is fast and (in combination with the R6 package) offers reference semantics. In addition to its native R6 interface, it provides an S3 interface for those who prefer the latter. Finally yet importantly, its functional approach allows for incorporating functionalities from many other packages.
Abstract of Manuscript. Differential gene expression analysis using RNA sequencing (RNA-seq) data is a standard approach for making biological discoveries. Ongoing large-scale efforts to process and normalize publicly available gene expression data enable rapid and systematic reanalysis. While several powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources systematically recompute differentially expressed genes (DEGs) generated from individual studies. We developed a robust differential expression analysis pipeline to recompute 3162 human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and 142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to interact with the recomputed DEG lists. DEET, available through CRAN and RShiny, systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF targets to their own gene lists. DEET identifies relevant studies based on shared results with the userâ s gene lists, aiding in hypothesis generation and data-driven literature review. Sokolowski, Dustin J., et al. "Differential Expression Enrichment Tool (DEET): an interactive atlas of human differential gene expression." Nucleic Acids Research Genomics and Bioinformatics (2023).