Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extends the functionality of other plotting packages (notably ggplot2') to help facilitate the plotting of data over long time intervals, including, but not limited to, geological, evolutionary, and ecological data. The primary goal of deeptime is to enable users to add highly customizable timescales to their visualizations. Other functions are also included to assist with other areas of deep time visualization.
Several quality measurements for investigating the performance of dimensionality reduction methods are provided here. In addition a new quality measurement called Gabriel classification error is made accessible, which was published in Thrun, M. C., Märte, J., & Stier, Q: "Analyzing Quality Measurements for Dimensionality Reduction" (2023), Machine Learning and Knowledge Extraction (MAKE), <DOI:10.3390/make5030056>.
Example datasets from the book "An Introduction to Generalised Linear Models" (Year: 2018, ISBN:9781138741515) by Dobson and Barnett.
Toggles the test and production versions of a large data analysis project.
Compares distributions with one another in terms of their fit to each sample in a dataset that contains multiple samples, as described in Joo, Aguinis, and Bradley (in press). Users can examine the fit of seven distributions per sample: pure power law, lognormal, exponential, power law with an exponential cutoff, normal, Poisson, and Weibull. Automation features allow the user to compare all distributions for all samples with a single command line, which creates a separate row containing results for each sample until the entire dataset has been analyzed.
This package provides a robust identification of differential binding sites method for analyzing ChIP-seq (Chromatin Immunoprecipitation Sequencing) comparing two samples that considers an ensemble of finite mixture models combined with a local false discovery rate (fdr) allowing for flexible modeling of data. Methods for Differential Identification using Mixture Ensemble (DIME) is described in: Taslim et al., (2011) <doi:10.1093/bioinformatics/btr165>.
Orders a data-set consisting of an ensemble of probability density functions on the same x-grid. Visualizes a box-plot of these functions based on the notion of distance determined by the user. Reports outliers based on the distance chosen and the scaling factor for an interquartile range rule. For further details, see: Alexander C. Murph et al. (2023). "Visualization and Outlier Detection for Probability Density Function Ensembles." <https://sirmurphalot.github.io/publications>.
This package provides a decorator is a function that receives a function, extends its behaviour, and returned the altered function. Any caller that uses the decorated function uses the same interface as it were the original, undecorated function. Decorators serve two primary uses: (1) Enhancing the response of a function as it sends data to a second component; (2) Supporting multiple optional behaviours. An example of the first use is a timer decorator that runs a function, outputs its execution time on the console, and returns the original function's result. An example of the second use is input type validation decorator that during running time tests whether the caller has passed input arguments of a particular class. Decorators can reduce execution time, say by memoization, or reduce bugs by adding defensive programming routines.
This package provides a versatile toolkit for analyzing and visualizing DEXi (Decision EXpert for education) decision trees, facilitating multi-criteria decision analysis directly within R. Users can read .dxi files, manipulate decision trees, and evaluate various scenarios. It supports sensitivity analysis through Monte Carlo simulations, one-at-a-time approaches, and variance-based methods, helping to discern the impact of input variations. Additionally, it includes functionalities for generating sampling plans and an array of visualization options for decision trees and analysis results. A distinctive feature is the synoptic table plot, aiding in the efficient comparison of scenarios. Whether for in-depth decision modeling or sensitivity analysis, this package stands as a comprehensive solution. Definition of sensitivity analyses available in Carpani, Bergez and Monod (2012) <doi:10.1016/j.envsoft.2011.10.002> and detailed description of the package soon available in Alaphilippe et al. (2025) <doi:10.1016/j.simpa.2024.100729>.
Estimates probabilistic phylogenetic Principal Component Analysis (PCA) and non-phylogenetic probabilistic PCA. Provides methods to implement alternative models of trait evolution including Brownian motion (BM), Ornstein-Uhlenbeck (OU), Early Burst (EB), and Pagel's lambda. Also provides flexible biplot functions.
Define a spatial Area of Interest (AOI) around a constructed dam using hydrology data. Dams have environmental and social impacts, both positive and negative. Current analyses of dams have no consistent way to specify at what spatial extent we should evaluate these impacts. damAOI implements methods to adjust reservoir polygons to match satellite-observed surface water areas, plot upstream and downstream rivers using elevation data and accumulated river flow, and draw buffers clipped by river basins around reservoirs and relevant rivers. This helps to consistently determine the areas which could be impacted by dam construction, facilitating comparative analysis and informed infrastructure investments.
This package provides functions for fitting a Bayesian model for grouping binary dissimilarity matrices in homogeneous clusters. Currently, it includes methods only for binary data (<doi:10.18637/jss.v100.i16>).
Companion package of Arnaud Barat, Andreu Sansó, Maite Arilla-Osuna, Ruth Blasco, Iñaki Pérez-Fernández, Gabriel Cifuentes-Alcobenda, Rubén Llorente, Daniel Vivar-Rà os, Ella Assaf, Ran Barkai, Avi Gopher, & Jordi Rosell-Ardèvol (2025), "Quantifying Diversity through Entropy Decomposition. Insights into Hominin Occupation and Carcass Processing at Qesem cave".
This package provides a dibble that implements data cubes (derived from dimensional tibble'), and allows broadcasting by dimensional names.
Identification of hub genes in a gene co-expression network from gene expression data. The differential network analysis for two contrasting conditions leads to the identification of various types of hubs like Housekeeping, Unique to stress (Disease) and Unique to control (Normal) hub genes.
Utility functions used for the R package development infrastructure inside the data integration centers ('DIZ') to standardize and facilitate repetitive tasks such as setting up a database connection or issuing notification messages and to avoid redundancy.
This package provides functions for handling dates.
Helper functions for descriptive tasks such as making print-friendly bivariate tables, sample size flow counts, and visualizing sample distributions. Also contains R approximations of some common SAS and Stata functions such as PROC MEANS from SAS and ladder', gladder', and pwcorr from Stata'.
Fit latent variable linear models, estimating score distributions for groups of people, following Cohen and Jiang (1999) <doi:10.2307/2669917>. In this model, a latent distribution is conditional on students item response, item characteristics, and conditioning variables the user includes. This latent trait is then integrated out. This software is intended to fit the same models as the existing software AM <https://am.air.org/>. As of version 2, also allows the user to draw plausible values.
In-line functions for multivariate optimization via desirability functions (Derringer and Suich, 1980, <doi:10.1080/00224065.1980.11980968>) with easy use within dplyr pipelines.
This package provides tools to fit sample selection models in case of discrete response variables, through a parametric formulation which represents a natural extension of the well-known Heckman selection model are provided in the package. The response variable can be of Bernoulli, Poisson or Negative Binomial type. The sample selection mechanism allows to choose among a Normal, Logistic or Gumbel distribution.
This package implements the locally efficient doubly robust difference-in-differences (DiD) estimators for the average treatment effect proposed by Sant'Anna and Zhao (2020) <doi:10.1016/j.jeconom.2020.06.003>. The estimator combines inverse probability weighting and outcome regression estimators (also implemented in the package) to form estimators with more attractive statistical properties. Two different estimation methods can be used to estimate the nuisance functions.
Extracts colonisation and branching times of island species to be used for analysis in the R package DAISIE'. It uses phylogenetic and endemicity data to extract the separate island colonists and store them.
This package provides functions for planning clinical trials subject to a delayed treatment effect using assurance-based methods. Includes two shiny applications for interactive exploration, simulation, and visualisation of trial designs and outcomes. The methodology is described in: Salsbury JA, Oakley JE, Julious SA, Hampson LV (2024) "Assurance methods for designing a clinical trial with a delayed treatment effect" <doi:10.1002/sim.10136>, Salsbury JA, Oakley JE, Julious SA, Hampson LV (2024) "Adaptive clinical trial design with delayed treatment effects using elicited prior distributions" <doi:10.48550/arXiv.2509.07602>.