Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides various tools for analysing density profiles obtained by resistance drilling. It can load individual or multiple files and trim the starting and ending part of each density profile. Tools are also provided to trim profiles manually, to remove the trend from measurements using several methods, to plot the profiles and to detect tree rings automatically. Written with a focus on forestry use of resistance drilling in standing trees.
Estimation of incidence and case fatality for a chronic disease, given partial information, using a multi-state model. Given data on age-specific mortality and either incidence or prevalence, Bayesian inference is used to estimate the posterior distributions of incidence, case fatality, and functions of these such as prevalence. The methods are described in Jackson et al. (2023) <doi:10.1093/jrsssa/qnac015>.
This package contains data sets, examples and software from the Second Edition of "Design of Observational Studies"; see Rosenbaum, P.R. (2010) <doi:10.1007/978-1-4419-1213-8>.
Post Global Financial Crisis derivatives reforms have lifted the veil off over-the-counter (OTC) derivative markets. Swap Execution Facilities (SEFs) and Swap Data Repositories (SDRs) now publish data on swaps that are traded on or reported to those facilities (respectively). This package provides you the ability to get this data from supported sources.
This package provides a facility to generate efficient designs for order-of-additions experiments under pair-wise-order model, see Dennis K. J. Lin and Jiayu Peng (2019)."Order-of-addition experiments: A review and some new thoughts". Quality Engineering, 31:1, 49-59, <doi:10.1080/08982112.2018.1548021>. It also provides a facility to generate component orthogonal arrays under component position model, see Jian-Feng Yang, Fasheng Sun & Hongquan Xu (2020): "A Component Position Model, Analysis and Design for Order-of-Addition Experiments". Technometrics, <doi:10.1080/00401706.2020.1764394>.
This package implements double hierarchical generalized linear models in which the mean, dispersion parameters for variance of random effects, and residual variance (overdispersion) can be further modeled as random-effect models.
Apply the Deductive Rational Method to a monthly series of flow or precipitation data to fill in missing data. The method is as described in: Campos, D.F., (1984, ISBN:9686194444).
Metabarcoding analysis using the DBTC package is implemented here using shiny in an interactive graphical user interface to conduct Metabarcode analyses and visualize and filter results.
Description of statistical associations between variables : measures of local and global association between variables (phi, Cramér V, correlations, eta-squared, Goodman and Kruskal tau, permutation tests, etc.), multiple graphical representations of the associations between variables (using ggplot2') and weighted statistics.
The dfmirroR package allows users to input a data frame, simulate some number of observations based on specified columns of that data frame, and then outputs a string that contains the code to re-create the simulation. The goal is to both provide workable test data sets and provide users with the information they need to set up reproducible examples with team members. This package was created out of a need to share examples in cases where data are private and where a full data frame is not needed for testing or coordinating.
This package implements maximum likelihood and bootstrap methods based on the diversity-dependent birth-death process to test whether speciation or extinction are diversity-dependent, under various models including various types of key innovations. See Etienne et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, <DOI:10.1098/rspb.2011.1439>, Etienne & Haegeman 2012, Am. Nat. 180: E75-E89, <DOI:10.1086/667574>, Etienne et al. 2016. Meth. Ecol. Evol. 7: 1092-1099, <DOI:10.1111/2041-210X.12565> and Laudanno et al. 2021. Syst. Biol. 70: 389â 407, <DOI:10.1093/sysbio/syaa048>. Also contains functions to simulate the diversity-dependent process.
Generalised model for population dynamics of invasive Aedes mosquitoes. Rationale and model structure are described here: Da Re et al. (2021) <doi:10.1016/j.ecoinf.2020.101180> and Da Re et al. (2022) <doi:10.1101/2021.12.21.473628>.
Using these tools to simplify the research process of political science and other social sciences. The current version can create folder system for academic project in political science, calculate psychological trait scores, visualize experimental and spatial data, and set up color-blind palette, functions used in academic research of political psychology or political science in general.
Access diverse ggplot2'-compatible color palettes for simplified data visualization.
The standard Difference-in-Differences (DID) setup involves two periods and two groups -- a treated group and untreated group. Many applications of DID methods involve more than two periods and have individuals that are treated at different points in time. This package contains tools for computing average treatment effect parameters in Difference in Differences setups with more than two periods and with variation in treatment timing using the methods developed in Callaway and Sant'Anna (2021) <doi:10.1016/j.jeconom.2020.12.001>. The main parameters are group-time average treatment effects which are the average treatment effect for a particular group at a a particular time. These can be aggregated into a fewer number of treatment effect parameters, and the package deals with the cases where there is selective treatment timing, dynamic treatment effects, calendar time effects, or combinations of these. There are also functions for testing the Difference in Differences assumption, and plotting group-time average treatment effects.
Geologic pattern data from <https://ngmdb.usgs.gov/fgdc_gds/geolsymstd.php>. Access functions are provided in the accompanying package deeptime'.
Offers robust tools to identify and manage incomplete responses in survey datasets, thereby enhancing the quality and reliability of research findings.
Calculate multiple biotic indices using diatoms from environmental samples. Diatom species are recognized by their species name using a heuristic search, and their ecological data is retrieved from multiple sources. It includes number/shape of chloroplasts diversity indices, size classes, ecological guilds, and multiple biotic indices. It outputs both a dataframe with all the results and plots of all the obtained data in a defined output folder. - Sample data was taken from Nicolosi Gelis, Cochero & Gómez (2020, <doi:10.1016/j.ecolind.2019.105951>). - The package uses the Diat.Barcode database to calculate morphological and ecological information by Rimet & Couchez (2012, <doi:10.1051/kmae/2012018>),and the combined classification of guilds and size classes established by B-Béres et al. (2017, <doi:10.1016/j.ecolind.2017.07.007>). - Current diatom-based biotic indices include the DES index by Descy (1979) - EPID index by Dell'Uomo (1996, ISBN: 3950009002) - IDAP index by Prygiel & Coste (1993, <doi:10.1007/BF00028033>) - ID-CH index by Hürlimann & Niederhauser (2007) - IDP index by Gómez & Licursi (2001, <doi:10.1023/A:1011415209445>) - ILM index by Leclercq & Maquet (1987) - IPS index by Coste (1982) - LOBO index by Lobo, Callegaro, & Bender (2002, ISBN:9788585869908) - SLA by SládeÄ ek (1986, <doi:10.1002/aheh.19860140519>) - TDI index by Kelly, & Whitton (1995, <doi:10.1007/BF00003802>) - SPEAR(herbicide) index by Wood, Mitrovic, Lim, Warne, Dunlop, & Kefford (2019, <doi:10.1016/j.ecolind.2018.12.035>) - PBIDW index by Castro-Roa & Pinilla-Agudelo (2014) - DISP index by Stenger-Kovács et al. (2018, <doi:10.1016/j.ecolind.2018.07.026>) - EDI index by Chamorro et al. (2024, <doi:10.1021/acsestwater.4c00126>) - DDI index by à lvarez-Blanco et al. (2013, <doi: 10.1007/s10661-012-2607-z>) - PDISE index by Kahlert et al. (2023, <doi:10.1007/s10661-023-11378-4>).
Fit logistic functions to observed dose-response continuous data and evaluate goodness-of-fit measures. See Malyutina A., Tang J., and Pessia A. (2023) <doi:10.18637/jss.v106.i04>.
This package provides a method to detect values poorly explained by a Gaussian linear model. The procedure is based on the maximum of the absolute value of the studentized residuals, which is a parameter-free statistic. This approach generalizes several procedures used to detect abnormal values during longitudinal monitoring of biological markers. For methodological details, see: Berthelot G., Saulière G., Dedecker J. (2025). "DEViaN-LM An R Package for Detecting Abnormal Values in the Gaussian Linear Model". HAL Id: hal-05230549. <https://hal.science/hal-05230549>.
Regression for a discrete response, where the conditional distribution is modelled via a discrete Weibull distribution.
Generates DNA sequences based on Markov model techniques for matched sequences. This can be generalized to several sequences. The sequences (taxa) are then arranged in an evolutionary tree (phylogenetic tree) depicting how taxa diverge from their common ancestors. This gives the tests and estimation methods for the parameters of different models. Standard phylogenetic methods assume stationarity, homogeneity and reversibility for the Markov processes, and often impose further restrictions on the parameters.
The distributed online expectation maximization algorithms are used to solve parameters of Poisson mixture models. The philosophy of the package is described in Guo, G. (2022) <doi:10.1080/02664763.2022.2053949>.
Fit and explore Drift Diffusion Models (DDMs), a common tool in psychology for describing decision processes in simple tasks. It can handle both time-independent and time-dependent DDMs. You either choose prebuilt models or create your own, and the package takes care of model predictions and parameter estimation. Model predictions are derived via the numerical solutions provided by Richter, Ulrich, and Janczyk (2023, <doi:10.1016/j.jmp.2023.102756>).