Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of the Dual Feature Reduction (DFR) approach for the Sparse Group Lasso (SGL) and the Adaptive Sparse Group Lasso (aSGL) (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.17094>). The DFR approach is a feature reduction approach that applies strong screening to reduce the feature space before optimisation, leading to speed-up improvements for fitting SGL (Simon et al. (2013) <doi:10.1080/10618600.2012.681250>) and aSGL (Mendez-Civieta et al. (2020) <doi:10.1007/s11634-020-00413-8> and Poignard (2020) <doi:10.1007/s10463-018-0692-7>) models. DFR is implemented using the Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) algorithm, with linear and logistic SGL models supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported.
This package provides a toolkit for parsing dice notation, analyzing rolls, calculating success probabilities, and plotting outcome distributions.
This package provides a revision to the stats::ks.test() function and the associated ks.test.Rd help page. With one minor exception, it does not change the existing behavior of ks.test(), and it adds features necessary for doing one-sample tests with hypothesized discrete distributions. The package also contains cvm.test(), for doing one-sample Cramer-von Mises goodness-of-fit tests.
While autoregressive distributed lag (ARDL) models allow for extremely flexible dynamics, interpreting substantive significance of complex lag structures remains difficult. This package is designed to assist users in dynamically simulating and plotting the results of various ARDL models. It also contains post-estimation diagnostics, including a test for cointegration when estimating the error-correction variant of the autoregressive distributed lag model (Pesaran, Shin, and Smith 2001 <doi:10.1002/jae.616>).
Different sample size calculations with different study designs. These techniques are explained by Chow (2007) <doi:10.1201/9781584889830>.
Tools, methods and processes for the management of analysis workflows. These lightweight solutions facilitate structuring R&D activities. These solutions were developed to comply with Good Documentation Practice (GDP), with ALCOA+ principles as proposed by the U.S. FDA, and with FAIR principles as discussed by Jacobsen et al. (2017) <doi:10.1162/dint_r_00024>.
Trains logistic regression model by discretizing continuous variables via gradient boosting approach. The proposed method tries to achieve a tradeoff between interpretation and prediction accuracy for logistic regression by discretizing the continuous variables. The variable binning is accomplished in a supervised fashion. The model trained by this package is still a single logistic regression model, but not a sequence of logistic regression models. The fitted model object returned from the model training consists of two tables. One table is used to give the boundaries of bins for each continuous variable as well as the corresponding coefficients, and the other one is used for discrete variables. This package can also be used for binning continuous variables for other statistical analysis.
Import data from a digital image; it requires user input for calibration and to locate the data points. The end result is similar to DataThief and other other programs that digitize published plots or graphs.
Distributed Online Mean Tests is a powerful tool designed to efficiently process and analyze distributed datasets. It enables users to perform mean tests in an online, distributed manner, making it highly suitable for large-scale data analysis. By leveraging advanced computational techniques, Domean ensures robust and scalable solutions for statistical analysis, particularly in scenarios where data is dispersed across multiple nodes or sources. This package is ideal for researchers and practitioners working with high-dimensional data, providing a flexible and efficient framework for mean testing. The philosophy of Domean is described in Guo G.(2025) <doi:10.1016/j.physa.2024.130308>.
The distributed online expectation maximization algorithms are used to solve parameters of Poisson mixture models. The philosophy of the package is described in Guo, G. (2022) <doi:10.1080/02664763.2022.2053949>.
By adding over-relaxation factor to PXEM (Parameter Expanded Expectation Maximization) method, the MOPXEM (Monotonically Overrelaxed Parameter Expanded Expectation Maximization) method is obtained. Compare it with the existing EM (Expectation-Maximization)-like methods. Then, distribute and process five methods and compare them, achieving good performance in convergence speed and result quality.The philosophy of the package is described in Guo G. (2022) <doi:10.1007/s00180-022-01270-z>.
This package provides novel dendroclimatological methods, primarily used by the Tree-ring research community. There are four core functions. The first one is daily_response(), which finds the optimal sequence of days that are related to one or more tree-ring proxy records. Similar function is daily_response_seascorr(), which implements partial correlations in the analysis of daily response functions. For the enthusiast of monthly data, there is monthly_response() function. The last core function is compare_methods(), which effectively compares several linear and nonlinear regression algorithms on the task of climate reconstruction.
Statistical deadband algorithms are based on the Send-On-Delta concept as in Miskowicz(2006,<doi:10.3390/s6010049>). A collection of functions compare effectiveness and fidelity of sampled signals using statistical deadband algorithms.
This package contains functions for the DivE estimator <doi:10.1371/journal.pcbi.1003646>. The DivE estimator is a heuristic approach to estimate the number of classes or the number of species (species richness) in a population.
Implementations of the multiple testing procedures for discrete tests described in the paper Döhler, Durand and Roquain (2018) "New FDR bounds for discrete and heterogeneous tests" <doi:10.1214/18-EJS1441>. The main procedures of the paper (HSU and HSD), their adaptive counterparts (AHSU and AHSD), and the HBR variant are available and are coded to take as input the results of a test procedure from package DiscreteTests', or a set of observed p-values and their discrete support under their nulls. A shortcut function to obtain such p-values and supports is also provided, along with a wrapper allowing to apply discrete procedures directly to data.
This package contains the function used to create the Dandelion Plot. Dandelion Plot is a visualization method for R-mode Exploratory Factor Analysis.
Implementation of automatically computing derivatives of functions (see Mailund Thomas (2017) <doi:10.1007/978-1-4842-2881-4>). Moreover, calculating gradients, Hessian and Jacobian matrices is possible.
Statistical hypothesis testing using the Delta method as proposed by Deng et al. (2018) <doi:10.1145/3219819.3219919>. This method replaces the standard variance estimation formula in the Z-test with an approximate formula derived via the Delta method, which can account for within-user correlation.
Discrete splines are a class of univariate piecewise polynomial functions which are analogous to splines, but whose smoothness is defined via divided differences rather than derivatives. Tools for efficient computations relating to discrete splines are provided here. These tools include discrete differentiation and integration, various matrix computations with discrete derivative or discrete spline bases matrices, and interpolation within discrete spline spaces. These techniques are described in Tibshirani (2020) <doi:10.48550/arXiv.2003.03886>.
This package provides programmatic access to the Dark Sky API <https://darksky.net/dev/docs>, which provides current or historical global weather conditions.
Data quality assessments guided by a data quality framework introduced by Schmidt and colleagues, 2021 <doi:10.1186/s12874-021-01252-7> target the data quality dimensions integrity, completeness, consistency, and accuracy. The scope of applicable functions rests on the availability of extensive metadata which can be provided in spreadsheet tables. Either standardized (e.g. as html5 reports) or individually tailored reports can be generated. For an introduction into the specification of corresponding metadata, please refer to the package website <https://dataquality.qihs.uni-greifswald.de/VIN_Annotation_of_Metadata.html>.
Evaluation (S4-)classes based on package distr for evaluating procedures (estimators/tests) at data/simulation in a unified way.
Phone numbers are often represented as strings because there is no obvious and suitable native representation for them. This leads to high memory use and a lack of standard representation. The package provides integer representation of Australian phone numbers with optional raw vector calling code. The package name is an extension of au and ph'.
Extends the functionality of other plotting packages (notably ggplot2') to help facilitate the plotting of data over long time intervals, including, but not limited to, geological, evolutionary, and ecological data. The primary goal of deeptime is to enable users to add highly customizable timescales to their visualizations. Other functions are also included to assist with other areas of deep time visualization.