Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Designed for genomic and proteomic data analysis, enabling unbiased PubMed searching, protein interaction network visualization, and comprehensive data summarization. This package aims to help users identify novel targets within their data sets based on protein network interactions and publication precedence of target's association with research context based on literature precedence. Methods in this package are described in detail in: Douglas (Year) <to-be-added DOI or link to the preprint>. Key functionalities of this package also leverage methodologies from previous works, such as: - Szklarczyk et al. (2023) <doi:10.1093/nar/gkac1000> - Winter (2017) <doi:10.32614/RJ-2017-066>.
Data screening is an important first step of any statistical analysis. dataReporter auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset. See Petersen AH, Ekstrøm CT (2019). "dataMaid: Your Assistant for Documenting Supervised Data Quality Screening in R." _Journal of Statistical Software_, *90*(6), 1-38 <doi:10.18637/jss.v090.i06> for more information.
While it has been well established that drugs affect and help patients differently, personalized drug response predictions remain challenging. Solutions based on single omics measurements have been proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth of information contained in multiple omics layers still poses a complex problem. We present a novel network analysis pipeline, DrDimont, Drug response prediction from Differential analysis of multi-omics networks. It allows for comparative conclusions between two conditions and translates them into differential drug response predictions. DrDimont focuses on molecular interactions. It establishes condition-specific networks from correlation within an omics layer that are then reduced and combined into heterogeneous, multi-omics molecular networks. A novel semi-local, path-based integration step ensures integrative conclusions. Differential predictions are derived from comparing the condition-specific integrated networks. DrDimont's predictions are explainable, i.e., molecular differences that are the source of high differential drug scores can be retrieved. Our proposed pipeline leverages multi-omics data for differential predictions, e.g. on drug response, and includes prior information on interactions. The case study presented in the vignette uses data published by Krug (2020) <doi:10.1016/j.cell.2020.10.036>. The package license applies only to the software and explicitly not to the included data.
This package provides a flexible container to manage and annotate Differential Gene Expression (DGE) analysis results (Smythe et. al (2015) <doi:10.1093/nar/gkv007>). The DGEobj has data slots for row (gene), col (samples), assays (matrix n-rows by m-samples dimensions) and metadata (not keyed to row, col, or assays). A set of accessory functions to deposit, query and retrieve subsets of a data workflow has been provided. Attributes are used to capture metadata such as species and gene model, including reproducibility information such that a 3rd party can access a DGEobj history to see how each data object was created or modified. Since the DGEobj is customizable and extensible it is not limited to RNA-seq analysis types of workflows -- it can accommodate nearly any data analysis workflow that starts from a matrix of assays (rows) by samples (columns).
Compressed spatial vector data originally from <https://dawadocs.dataforsyningen.dk/> saved as Simple Features, SF, objects with data on population, age and gender from Statistics Denmark <https://www.dst.dk/da/>.
This package provides extra functions to manipulate dendrograms that build on the base functions provided by the stats package. The main functionality it is designed to add is the ability to colour all the edges in an object of class dendrogram according to cluster membership i.e. each subtree is coloured, not just the terminal leaves. In addition it provides some utility functions to cut dendrogram and hclust objects and to set/get labels.
This package provides a collection of data-limited management procedures that can be evaluated with management strategy evaluation with the MSEtool package, or applied to fishery data to provide management recommendations.
The DALY Calculator is a free, open-source Graphical User Interface (GUI) for stochastic disability-adjusted life year (DALY) calculation.
This package performs the drifting Markov models (DMM) which are non-homogeneous Markov models designed for modeling the heterogeneities of sequences in a more flexible way than homogeneous Markov chains or even hidden Markov models. In this context, we developed an R package dedicated to the estimation, simulation and the exact computation of associated reliability of drifting Markov models. The implemented methods are described in Vergne, N. (2008), <doi:10.2202/1544-6115.1326> and Barbu, V.S., Vergne, N. (2019) <doi:10.1007/s11009-018-9682-8> .
Create and manage fault-tolerant task queues for the foreach package using the Redis key/value database.
Metrics of difference for comparing pairs of variables or pairs of maps representing real or categorical variables at original and multiple resolutions.
This package provides methods for testing the equality between groups of estimated density functions. The package implements FDET (Fourier-based Density Equality Testing) and MDET (Moment-based Density Equality Testing), two new approaches introduced by the author. Both methods extend an earlier testing approach by Delicado (2007), "Functional k-sample problem when data are density functions" <doi:10.1007/s00180-007-0047-y>, which is referred to as DET (Density Equality Testing) in this package for clarity. FDET compares groups of densities based on their global shape using Fourier transforms, while MDET tests for differences in distributional moments. All methods are described in Anarat, Krutmann and Schwender (2025), "Testing for Differences in Extrinsic Skin Aging Based on Density Functions" (Submitted).
Supports propensity score-based methodsâ including matching, stratification, and weightingâ for estimating causal treatment effects. It also implements calibration using negative control outcomes to enhance robustness. debiasedTrialEmulation facilitates effect estimation for both binary and time-to-event outcomes, supporting risk ratio (RR), odds ratio (OR), and hazard ratio (HR) as effect measures. It integrates statistical modeling and visualization tools to assess covariate balance, equipoise, and bias calibration. Additional methodsâ including approaches to address immortal time bias, information bias, selection bias, and informative censoringâ are under development. Users interested in these extended features are encouraged to contact the package authors.
This package provides a wrapper on top of the Domino Data Python SDK library. It lets you query and access Domino Data Sources directly from your R environment. Under the hood, Domino Data R SDK leverages the API provided by the Domino Data Python SDK', which must be installed as a prerequisite. Domino is a platform that makes it easy to run your code on scalable hardware, with integrated version control and collaboration features designed for analytical workflows. See <https://docs.dominodatalab.com/en/latest/api_guide/140b48/domino-data-api> for more information.
There are many different formats dates are commonly represented with: the order of day, month, or year can differ, different separators ("-", "/", or whitespace) can be used, months can be numerical, names, or abbreviations and year given as two digits or four. datefixR takes dates in all these different formats and converts them to R's built-in date class. If datefixR cannot standardize a date, such as because it is too malformed, then the user is told which date cannot be standardized and the corresponding ID for the row. datefixR also allows the imputation of missing days and months with user-controlled behavior.
Based on random forest principle, DynForest is able to include multiple longitudinal predictors to provide individual predictions. Longitudinal predictors are modeled through the random forest. The methodology is fully described for a survival outcome in: Devaux, Helmer, Genuer & Proust-Lima (2023) <doi: 10.1177/09622802231206477>.
Deep compositional spatial models are standard spatial covariance models coupled with an injective warping function of the spatial domain. The warping function is constructed through a composition of multiple elemental injective functions in a deep-learning framework. The package implements two cases for the univariate setting; first, when these warping functions are known up to some weights that need to be estimated, and, second, when the weights in each layer are random. In the multivariate setting only the former case is available. Estimation and inference is done using `tensorflow`, which makes use of graphics processing units. For more details see Zammit-Mangion et al. (2022) <doi:10.1080/01621459.2021.1887741>, Vu et al. (2022) <doi:10.5705/ss.202020.0156>, Vu et al. (2023) <doi:10.1016/j.spasta.2023.100742>, and Shao et al. (2025) <doi:10.48550/arXiv.2505.12548>.
Description of statistical associations between variables : measures of local and global association between variables (phi, Cramér V, correlations, eta-squared, Goodman and Kruskal tau, permutation tests, etc.), multiple graphical representations of the associations between variables (using ggplot2') and weighted statistics.
Implement weighted higher-order initialization and angle-based iteration for multi-way spherical clustering under degree-corrected tensor block model. See reference Jiaxin Hu and Miaoyan Wang (2023) <doi:10.1109/TIT.2023.3239521>.
This package provides a full definition for Weibull tails and Full-Tails Gamma and tools for fitting these distributions to empirical tails. This package build upon the paper by del Castillo, Joan & Daoudi, Jalila & Serra, Isabel. (2012) <doi:10.1017/asb.2017.9>.
Leverages dplyr to process the calculations of a plot inside a database. This package provides helper functions that abstract the work at three levels: outputs a ggplot', outputs the calculations, outputs the formula needed to calculate bins.
Discriminant Analysis (DA) for evolutionary inference (Qin, X. et al, 2020, <doi:10.22541/au.159256808.83862168>), especially for population genetic structure and community structure inference. This package incorporates the commonly used linear and non-linear, local and global supervised learning approaches (discriminant analysis), including Linear Discriminant Analysis of Kernel Principal Components (LDAKPC), Local (Fisher) Linear Discriminant Analysis (LFDA), Local (Fisher) Discriminant Analysis of Kernel Principal Components (LFDAKPC) and Kernel Local (Fisher) Discriminant Analysis (KLFDA). These discriminant analyses can be used to do ecological and evolutionary inference, including demography inference, species identification, and population/community structure inference.
Perform tree-ring analyses such as detrending, chronology building, and cross dating. Read and write standard file formats used in dendrochronology.
This MCMC method takes a data numeric vector (Y) and assigns the elements of Y to a (potentially infinite) number of normal distributions. The individual normal distributions from a mixture of normals can be inferred. Following the method described in Escobar (1994) <doi:10.2307/2291223> we use a Dirichlet Process Prior (DPP) to describe stochastically our prior assumptions about the dimensionality of the data.