Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Works as a virtual CRAN snapshot for source packages. It automatically downloads and installs tar.gz files with dependencies, all of which were available on a specific day.
Data sets and sample analyses from Jay L. Devore (2008), "Probability and Statistics for Engineering and the Sciences (7th ed)", Thomson.
An intuitive, cross-platform graphical data analysis system. It uses menus and dialogs to guide the user efficiently through the data manipulation and analysis process, and has an excel like spreadsheet for easy data frame visualization and editing. Deducer works best when used with the Java based R GUI JGR, but the dialogs can be called from the command line. Dialogs have also been integrated into the Windows Rgui.
Likelihood-based inference methods with doubly-truncated data are developed under various models. Nonparametric models are based on Efron and Petrosian (1999) <doi:10.1080/01621459.1999.10474187> and Emura, Konno, and Michimae (2015) <doi:10.1007/s10985-014-9297-5>. Parametric models from the special exponential family (SEF) are based on Hu and Emura (2015) <doi:10.1007/s00180-015-0564-z> and Emura, Hu and Konno (2017) <doi:10.1007/s00362-015-0730-y>. The parametric location-scale models are based on Dorre et al. (2021) <doi:10.1007/s00180-020-01027-6>.
Visualize one-factor data frame. Beads plot consists of diamonds of each factor of each data series. A diamond indicates average and range. Look over a data frame with many numeric columns and a factor column.
You can retrieve Spotify API Information such as artists, albums, tracks, features tracks, recommendations or related artists. This package allows you to search all the information by name and also includes a distance based algorithm to find similar songs. More information: <https://developer.spotify.com/documentation/web-api/> .
Helpers functions to process, analyse, and visualize the output of single locus species delimitation methods. For full functionality, please install suggested software at <https://legallab.github.io/delimtools/articles/install.html>.
Estimation of functional linear mixed models for densely sampled data based on functional principal component analysis.
Offers meta programming style tools to generate configurable R functions that produce HTML forms based on table input and SQL meta data. Also generates functions for collecting the parameters of those HTML forms after they are submitted. Useful for quickly generating HTML forms based on existing SQL tables. To use the resultant functions, the output files containing those functions must be read into the R environment (perhaps using base::source()).
This package provides functions for reading DCP and CDF.bin files generated by the dChip software.
Efficient methods for computing distance covariance and relevant statistics. See Székely et al.(2007) <doi:10.1214/009053607000000505>; Székely and Rizzo (2013) <doi:10.1016/j.jmva.2013.02.012>; Székely and Rizzo (2014) <doi:10.1214/14-AOS1255>; Huo and Székely (2016) <doi:10.1080/00401706.2015.1054435>.
Work within the dplyr workflow to add random variates to your data frame. Variates can be added at any level of an existing column. Also, bounds can be specified for simulated variates.
This package provides a key-value dictionary data structure based on R6 class which is designed to be similar usages with other languages dictionary (e.g. Python') with reference semantics and extendabilities by R6.
Deep Gaussian mixture models as proposed by Viroli and McLachlan (2019) <doi:10.1007/s11222-017-9793-z> provide a generalization of classical Gaussian mixtures to multiple layers. Each layer contains a set of latent variables that follow a mixture of Gaussian distributions. To avoid overparameterized solutions, dimension reduction is applied at each layer by way of factor models.
Read, construct and write CDISC (Clinical Data Interchange Standards Consortium) Dataset JSON (JavaScript Object Notation) files, while validating per the Dataset JSON schema file, as described in CDISC (2023) <https://www.cdisc.org/standards/data-exchange/dataset-json>.
This package provides a set of functions to perform Raju, van der Linden and Fleer's (1995, <doi:10.1177/014662169501900405>) Differential Functioning of Items and Tests (DFIT) analyses. It includes functions to use the Monte Carlo Item Parameter Replication approach (Oshima, Raju, & Nanda, 2006, <doi:10.1111/j.1745-3984.2006.00001.x>) for obtaining the associated statistical significance tests cut-off points. They may also be used for a priori and post-hoc power calculations (Cervantes, 2017, <doi:10.18637/jss.v076.i05>).
Computes small-sample degrees of freedom adjustment for heteroskedasticity robust standard errors, and for clustered standard errors in linear regression. See Imbens and Kolesár (2016) <doi:10.1162/REST_a_00552> for a discussion of these adjustments.
Exploratory analysis of a data base. Using the functions of this package is possible to filter the data set detecting atypical values (outliers) and to perform exploratory analysis through visual inspection or dispersion measures. With this package you can explore the structure of your data using several parameters at the same time joining statistical parameters with different graphics. Finally, this package aid to confirm or reject the hypothesis that your data structure presents a normal distribution. Therefore this package is useful to get a previous insight of your data before to carry out statistical analysis.
All datasets and functions required for the examples and exercises of the book "Data Science for Psychologists" (by Hansjoerg Neth, Konstanz University, 2025, <doi:10.5281/zenodo.7229812>), freely available at <https://bookdown.org/hneth/ds4psy/>. The book and corresponding courses introduce principles and methods of data science to students of psychology and other biological or social sciences. The ds4psy package primarily provides datasets, but also functions for data generation and manipulation (e.g., of text and time data) and graphics that are used in the book and its exercises. All functions included in ds4psy are designed to be explicit and instructive, rather than efficient or elegant.
Detect abrupt changes in time series with local fluctuations as a random walk process and autocorrelated noise as an AR(1) process. See Romano, G., Rigaill, G., Runge, V., Fearnhead, P. (2021) <doi:10.1080/01621459.2021.1909598>.
Chaos theory has been hailed as a revolution of thoughts and attracting ever increasing attention of many scientists from diverse disciplines. Chaotic systems are nonlinear deterministic dynamic systems which can behave like an erratic and apparently random motion. A relevant field inside chaos theory and nonlinear time series analysis is the detection of a chaotic behaviour from empirical time series data. One of the main features of chaos is the well known initial value sensitivity property. Methods and techniques related to test the hypothesis of chaos try to quantify the initial value sensitive property estimating the Lyapunov exponents. The DChaos package provides different useful tools and efficient algorithms which test robustly the hypothesis of chaos based on the Lyapunov exponent in order to know if the data generating process behind time series behave chaotically or not.
This package provides functionality for users who are learning R or the techniques of data analysis. Written as a collection of wrapper functions, the DTwrapper package facilitates many core operations of data processing. This is achieved with relatively few requirements about the order of the processing steps or knowledge of specialized syntax. DTwrappers creates coding results along with translations to data.table's code. This enables users to benefit from the speed and efficiency of data.table's calculations. Furthermore, the package also provides the translated code for educational purposes so that users can review working examples of coding syntax and calculations.
This package provides a sparse Partial Least Squares implementation which uses soft-threshold estimation of the covariance matrices and therein introduces sparsity. Number of components and regularization coefficients are automatically set.
This package provides functions for direct surrogate variable analysis, which can identify hidden factors in high-dimensional biomedical data.