Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An R implementation and enhancement of the Dynamic TOPMODEL semi-distributed hydrological model originally proposed by Beven and Freer (2001) <doi:10.1002/hyp.252>. The dynatop package implements code for simulating models which can be created using the dynatopGIS package.
Data quality assessments guided by a data quality framework introduced by Schmidt and colleagues, 2021 <doi:10.1186/s12874-021-01252-7> target the data quality dimensions integrity, completeness, consistency, and accuracy. The scope of applicable functions rests on the availability of extensive metadata which can be provided in spreadsheet tables. Either standardized (e.g. as html5 reports) or individually tailored reports can be generated. For an introduction into the specification of corresponding metadata, please refer to the package website <https://dataquality.qihs.uni-greifswald.de/VIN_Annotation_of_Metadata.html>.
This package performs hypothesis tests concerning a regression function in a least-squares model, where the null is a parametric function, and the alternative is the union of large-dimensional convex polyhedral cones. See Bodhisattva Sen and Mary C Meyer (2016) <doi:10.1111/rssb.12178> for more details.
This package provides a HTML widget that shows differences between files (text, images, and data frames).
Metrics of difference for comparing pairs of variables or pairs of maps representing real or categorical variables at original and multiple resolutions.
Decomposing value added growth into explanatory factors. A cost constrained value added function is defined to specify the production frontier. Industry estimates can also be aggregated using a weighted average approach. Details about the methodology and data can be found in Diewert and Fox (2018) <doi:10.1093/oxfordhb/9780190226718.013.19> and Zeng, Parsons, Diewert and Fox (2018) <https://www.business.unsw.edu.au/research-site/centreforappliedeconomicresearch-site/Documents/emg2018-6_SZeng_EMG-Slides.pdf>.
Includes functions that researchers or practitioners may use to clean raw data, transferring html, xlsx, txt data file into other formats. And it also can be used to manipulate text variables, extract numeric variables from text variables and other variable cleaning processes. It is originated from a author's project which focuses on creative performance in online education environment. The resulting paper of that study will be published soon.
This package provides tools to compute directly age-standardised rates using the 2013 European Standard Population. Includes variance estimation and 95% confidence intervals for population health applications. Functions are flexible to handle any grouping variable and age bands, allowing reproducible and automated analyses.
This package implements methods for calculating disproportionate impact: the percentage point gap, proportionality index, and the 80% index. California Community Colleges Chancellor's Office (2017). Percentage Point Gap Method. <https://www.cccco.edu/-/media/CCCCO-Website/About-Us/Divisions/Digital-Innovation-and-Infrastructure/Research/Files/PercentagePointGapMethod2017.ashx>. California Community Colleges Chancellor's Office (2014). Guidelines for Measuring Disproportionate Impact in Equity Plans. <https://www.cccco.edu/-/media/CCCCO-Website/Files/DII/guidelines-for-measuring-disproportionate-impact-in-equity-plans-tfa-ada.pdf>.
This package provides tools for temporal disaggregation, including: (1) High-dimensional and low-dimensional series generation for simulation studies; (2) A toolkit for temporal disaggregation and benchmarking using low-dimensional indicator series as proposed by Dagum and Cholette (2006, ISBN:978-0-387-35439-2); (3) Novel techniques by Mosley, Gibberd, and Eckley (2022, <doi:10.1111/rssa.12952>) for disaggregating low-frequency series in the presence of high-dimensional indicator matrices.
Analyzes non-verbal communication by processing data extracted from video recordings of dyadic interactions. It supports integration with open source tools, currently limited to OpenPose (Cao et al. (2019) <doi:10.1109/TPAMI.2019.2929257>), converting its outputs into CSV format for further analysis. The package includes functions for data pre-processing, visualization, and computation of motion indices such as velocity, acceleration, and jerkiness (Cook et al. (2013) <doi:10.1093/brain/awt208>), facilitating the analysis of non-verbal cues in paired interactions and contributing to research on human communication dynamics.
Non-normality could greatly distort the meta-analytic results, according to the simulation in Sun and Cheung (2020) <doi: 10.3758/s13428-019-01334-x>. This package aims to detect non-normality for two independent groups with only limited descriptive statistics, including mean, standard deviation, minimum, and maximum.
Compute the dynamic threshold panel model suggested by (Stephanie Kremer, Alexander Bick and Dieter Nautz (2013) <doi:10.1007/s00181-012-0553-9>) in which they extended the (Hansen (1999) <doi: 10.1016/S0304-4076(99)00025-1>) original static panel threshold estimation and the Caner and (Hansen (2004) <doi:10.1017/S0266466604205011>) cross-sectional instrumental variable threshold model, where generalized methods of moments type estimators are used.
This package implements the algorithm described in Jun Li and Alicia T. Lamere, "DiPhiSeq: Robust comparison of expression levels on RNA-Seq data with large sample sizes" (Unpublished). Detects not only genes that show different average expressions ("differential expression", DE), but also genes that show different diversities of expressions in different groups ("differentially dispersed", DD). DD genes can be important clinical markers. DiPhiSeq uses a redescending penalty on the quasi-likelihood function, and thus has superior robustness against outliers and other noise. Updates from version 0.1.0: (1) Added the option of using adaptive initial value for phi. (2) Added a function for estimating the proportion of outliers in the data. (3) Modified the input parameter names for clarity, and modified the output format for the main function.
An interactive editor built on rhandsontable to allow the interactive viewing, entering, filtering and editing of data in R <https://dillonhammill.github.io/DataEditR/>.
This package provides a set of functions for inferring, visualizing, and analyzing B cell phylogenetic trees. Provides methods to 1) reconstruct unmutated ancestral sequences, 2) build B cell phylogenetic trees using multiple methods, 3) visualize trees with metadata at the tips, 4) reconstruct intermediate sequences, 5) detect biased ancestor-descendant relationships among metadata types Workflow examples available at documentation site (see URL). Citations: Hoehn et al (2022) <doi:10.1371/journal.pcbi.1009885>, Hoehn et al (2021) <doi:10.1101/2021.01.06.425648>.
This package provides methods for testing the equality between groups of estimated density functions. The package implements FDET (Fourier-based Density Equality Testing) and MDET (Moment-based Density Equality Testing), two new approaches introduced by the author. Both methods extend an earlier testing approach by Delicado (2007), "Functional k-sample problem when data are density functions" <doi:10.1007/s00180-007-0047-y>, which is referred to as DET (Density Equality Testing) in this package for clarity. FDET compares groups of densities based on their global shape using Fourier transforms, while MDET tests for differences in distributional moments. All methods are described in Anarat, Krutmann and Schwender (2025), "Testing for Differences in Extrinsic Skin Aging Based on Density Functions" (Submitted).
Dynamic simulations and graphical depictions of autoregressive relationships.
The D-score summarizes a child's performance on developmental milestones into a single number. Its key feature is its generic nature. The method does not depend on a specific measurement instrument. The statistical method underlying the D-score is described in van Buuren et al. (2025) <doi:10.1177/01650254241294033>. This package implements model keys to convert milestone scores to D-scores; maps instrument-specific item names to a generic 9-position naming convention; computes D-scores and their precision from a child's milestone scores; and converts D-scores to Development-for-Age Z-scores (DAZ) using age-conditional reference standards.
This package provides functions to facilitate access to the DKAN API (<https://dkan.readthedocs.io/en/latest/apis/index.html>), including the DKAN REST API (metadata), and the DKAN datastore API (data). Includes functions to list, create, retrieve, update, and delete datasets and resources nodes. It also includes functions to search and retrieve data from the DKAN datastore.
Function to create forest plots. Functions to use posterior samples from Bayesian bivariate meta-analysis model, Bayesian hierarchical summary receiver operating characteristic (HSROC) meta-analysis model or Bayesian latent class (LC) meta-analysis model to create Summary Receiver Operating Characteristic (SROC) plots using methods described by Harbord et al (2007)<doi:10.1093/biostatistics/kxl004>.
This package provides a framework for creating production outputs. Users can frame a table, listing, or figure with headers and footers and save to an output file. Stores an intermediate docorator object for reproducibility and rendering to multiple output types.
This linear model solution is useful when both predictor and response have associated uncertainty. The doubly weights linear model solution is invariant on which quantity is used as predictor or response. Based on the results by Reed(1989) <doi:10.1119/1.15963> and Ripley & Thompson(1987) <doi:10.1039/AN9871200377>.
To create demographic table with simple summary statistics, with optional comparison(s) over one or more groups.