Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates extinction risk from population time series under a drifted Wiener process using the w-z method for accurate confidence intervals.
Estimation tools for multidimensional Gaussian means using empirical Bayesian g-modeling. Methods are able to handle fully observed data as well as left-, right-, and interval-censored observations (Tobit likelihood); descriptions of these methods can be found in Barbehenn and Zhao (2023) <doi:10.48550/arXiv.2306.07239>. Additional, lower-level functionality based on Kiefer and Wolfowitz (1956) <doi:10.1214/aoms/1177728066> and Jiang and Zhang (2009) <doi:10.1214/08-AOS638> is provided that can be used to accelerate many empirical Bayes and nonparametric maximum likelihood problems.
This package provides tools for transforming R expressions. Provides functions for finding, extracting, and replacing patterns in R language objects, similarly to how regular expressions can be used to find, extract, and replace patterns in text. Also provides functions for generating code using specially-formatted template files and for translating R expressions into similar expressions in other programming languages. The package may be helpful for advanced uses of R expressions, such as developing domain-specific languages.
Generation of bioclimatic rasters that are complementary to the typical 19 bioclim variables.
Computing economic analysis in civil infrastructure and ecosystem restoration projects is a typical activity. This package contains Standard cost engineering and engineering economics methods that are applied to convert between present, future, and annualized costs. Newnan D. (2020) <ISBN 9780190931919> â Engineering Economic Analysisâ .
Highest averages & largest remainders allocating seats methods and several party system scores. Implemented highest averages allocating seats methods are D'Hondt, Webster, Danish, Imperiali, Hill-Huntington, Dean, Modified Sainte-Lague, equal proportions and Adams. Implemented largest remainders allocating seats methods are Hare, Droop, Hangenbach-Bischoff, Imperial, modified Imperial and quotas & remainders. The main advantage of this package is that ties are always reported and not incorrectly allocated. Party system scores provided are competitiveness, concentration, effective number of parties, party nationalization score, party system nationalization score and volatility. References: Gallagher (1991) <doi:10.1016/0261-3794(91)90004-C>. Norris (2004, ISBN:0-521-82977-1). Laakso & Taagepera (1979) <https://escholarship.org/uc/item/703827nv>. Jones & Mainwaring (2003) <https://kellogg.nd.edu/sites/default/files/old_files/documents/304_0.pdf>. Pedersen (1979) <https://janda.org/c24/Readings/Pedersen/Pedersen.htm>. Golosov (2010) <doi:10.1177/1354068809339538>. Golosov (2014) <doi:10.1177/1354068814549342>.
The EUNIS habitat classification is a comprehensive pan-European system for habitat identification <https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1>. This is an R data package providing the EUNIS classification system. The classification is hierarchical and covers all types of habitats from natural to artificial, from terrestrial to freshwater and marine. The habitat types are identified by specific codes, names and descriptions and come with schema crosswalks to other habitat typologies.
Predicts enrollment and events assumed enrollment and treatment-specific time-to-event models, and calculates test statistics for time-to-event data with cured population based on the simulation.Methods for prediction event in the existence of cured population are as described in : Chen, Tai-Tsang(2016) <doi:10.1186/s12874-016-0117-3>.
This package implements estimation methods for parameters of common distribution families. The common d, p, q, r function family for each distribution is enriched with the ll, e, and v counterparts, computing the log-likelihood, performing estimation, and calculating the asymptotic variance - covariance matrix, respectively. Parameter estimation is performed analytically whenever possible.
Extends the Changes-in-Changes model a la Athey and Imbens (2006) <doi:10.1111/j.1468-0262.2006.00668.x> to multiple cohorts and time periods, which generalizes difference-in-differences estimation techniques to the entire distribution. Computes quantile treatment effects for every possible two-by-two combination in ecic(). Then, aggregating all bootstrap runs adds the standard errors in summary_ecic(). Results can be plotted with plot_ecic() aggregated over all cohort-group combinations or in an event-study style for either individual periods or individual quantiles.
This package provides a system for batch-marking data analysis to estimate survival probabilities, capture probabilities, and enumerate the population abundance for both marked and unmarked individuals. The estimation of only marked individuals can be achieved through the batchMarkOptim() function. Similarly, the combined marked and unmarked can be achieved through the batchMarkUnmarkOptim() function. The algorithm was also implemented for the hidden Markov model encapsulated in batchMarkUnmarkOptim() to estimate the abundance of both marked and unmarked individuals in the population. The package is based on the paper: "Hidden Markov Models for Extended Batch Data" of Cowen et al. (2017) <doi:10.1111/biom.12701>.
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric (Kw-CWG) lifetime probability distribution proposed in Afify, A.Z. et al (2017) <doi:10.1214/16-BJPS322>.
Simulation and estimation of Exponential Random Graph Models (ERGMs) for small networks using exact statistics as shown in Vega Yon et al. (2020) <DOI:10.1016/j.socnet.2020.07.005>. As a difference from the ergm package, ergmito circumvents using Markov-Chain Maximum Likelihood Estimator (MC-MLE) and instead uses Maximum Likelihood Estimator (MLE) to fit ERGMs for small networks. As exhaustive enumeration is computationally feasible for small networks, this R package takes advantage of this and provides tools for calculating likelihood functions, and other relevant functions, directly, meaning that in many cases both estimation and simulation of ERGMs for small networks can be faster and more accurate than simulation-based algorithms.
This package implements choice models based on economic theory, including estimation using Markov chain Monte Carlo (MCMC), prediction, and more. Its usability is inspired by ideas from tidyverse'. Models include versions of the Hierarchical Multinomial Logit and Multiple Discrete-Continous (Volumetric) models with and without screening. The foundations of these models are described in Allenby, Hardt and Rossi (2019) <doi:10.1016/bs.hem.2019.04.002>. Models with conjunctive screening are described in Kim, Hardt, Kim and Allenby (2022) <doi:10.1016/j.ijresmar.2022.04.001>. Models with set-size variation are described in Hardt and Kurz (2020) <doi:10.2139/ssrn.3418383>.
Computes and plots a transformed empirical CDF (ecdf) as a diagnostic for heavy tailed data, specifically data with power law decay on the tails. Routines for annotating the plot, comparing data to a model, fitting a nonparametric model, and some multivariate extensions are given.
Variable selection methods have been extensively developed for analyzing highdimensional omics data within both the frequentist and Bayesian frameworks. This package provides implementations of the spike-and-slab quantile (group) LASSO which have been developed along the line of Bayesian hierarchical models but deeply rooted in frequentist regularization methods by utilizing Expectationâ Maximization (EM) algorithm. The spike-and-slab quantile LASSO can handle data irregularity in terms of skewness and outliers in response variables, compared to its non-robust alternative, the spike-and-slab LASSO, which has also been implemented in the package. In addition, procedures for fitting the spike-and-slab quantile group LASSO and its non-robust counterpart have been implemented in the form of quantile/least-square varying coefficient mixed effect models for high-dimensional longitudinal data. The core module of this package is developed in C++'.
An implementation of extended state-space SIR models developed by Song Lab at UM school of Public Health. There are several functions available by 1) including a time-varying transmission modifier, 2) adding a time-dependent quarantine compartment, 3) adding a time-dependent antibody-immunization compartment. Wang L. (2020) <doi:10.6339/JDS.202007_18(3).0003>.
This SVG elements generator can easily generate SVG elements such as rect, line, circle, ellipse, polygon, polyline, text and group. Also, it can combine and output SVG elements into a SVG file.
This is a collection of data files for exploring sightings of wild things, relative to weather and tourism patterns in Australia.
The 2-D spatial and temporal Epidemic Type Aftershock Sequence ('ETAS') Model is widely used to decluster earthquake data catalogs. Usually, the calculation of standard errors of the ETAS model parameter estimates is based on the Hessian matrix derived from the log-likelihood function of the fitted model. However, when an ETAS model is fitted to a local data set over a time period that is limited or short, the standard errors based on the Hessian matrix may be inaccurate. It follows that the asymptotic confidence intervals for parameters may not always be reliable. As an alternative, this package allows for the construction of bootstrap confidence intervals based on empirical quantiles for the parameters of the 2-D spatial and temporal ETAS model. This version improves on Version 0.1.0 of the package by enabling the study space window (renamed study region') to be polygonal rather than merely rectangular. A Japan earthquake data catalog is used in a second example to illustrate this new feature.
Analytical methods to locate and characterise ecotones, ecosystems and environmental patchiness along ecological gradients. Methods are implemented for isolated sampling or for space/time series. It includes Detrended Correspondence Analysis (Hill & Gauch (1980) <doi:10.1007/BF00048870>), fuzzy clustering (De Cáceres et al. (2010) <doi:10.1080/01621459.1963.10500845>), biodiversity indices (Jost (2006) <doi:10.1111/j.2006.0030-1299.14714.x>), and network analyses (Epskamp et al. (2012) <doi:10.18637/jss.v048.i04>) - as well as tools to explore the number of clusters in the data. Functions to produce synthetic ecological datasets are also provided.
Evaluate diagnostic test performance using data from laboratory or diagnostic research. It supports both binary and continuous test variables. It allows users to compute key performance indicators and visualize Receiver Operating Characteristic (ROC) curves, determine optimal cut-off thresholds, display confusion matrix, and export publication-ready plot. It aims to facilitate the application of statistical methods in diagnostic test evaluation by healthcare professionals. The methodology used to compute the performance indicators follows the overview described by Habibzadeh (2025) <doi:10.11613/BM.2025.010101>. Thanks to shiny package.
Import data from Epidata XML files .epx and convert it to R data structures.
An R client for the emailvalidation.io e-mail verification API. The API requires registration of an API key. Basic features are free, some require a paid subscription. You can find the full API documentation at <https://emailvalidation.io/docs> .