Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a flexible, versatile, and computationally tractable model for density regression based on a single-weights dependent Dirichlet process mixture of normal distributions model for univariate continuous responses. The model assumes an additive structure for the mean of each mixture component and the effects of continuous covariates are captured through smooth nonlinear functions. The key components of our modelling approach are penalised B-splines and their bivariate tensor product extension. The proposed method can also easily deal with parametric effects of categorical covariates, linear effects of continuous covariates, interactions between categorical and/or continuous covariates, varying coefficient terms, and random effects. Please see Rodriguez-Alvarez, Inacio et al. (2025) for more details.
This package provides a collection of functions which aim to assist common computational workflow for analysis of matabolomic data..
This package provides tools to identify, quantify, analyze, and visualize growth suppression events in tree rings that are often produced by insect defoliation. Described in Guiterman et al. (2020) <doi:10.1016/j.dendro.2020.125750>.
An anonymization algorithm to resist neighbor label attack in a dynamic network.
Implement some deep learning architectures and neural network algorithms, including BP,RBM,DBN,Deep autoencoder and so on.
This package provides a common interface for applying dimensionality reduction methods, such as Principal Component Analysis ('PCA'), Independent Component Analysis ('ICA'), diffusion maps, Locally-Linear Embedding ('LLE'), t-distributed Stochastic Neighbor Embedding ('t-SNE'), and Uniform Manifold Approximation and Projection ('UMAP'). Has built-in support for sparse matrices.
Decompose a time series into seasonal, trend and irregular components using transformations to amplitude-frequency domain.
Computationally efficient tools for comparing all pairs of profiles in a DNA database. The expectation and covariance of the summary statistic is implemented for fast computing. Routines for estimating proportions of close related individuals are available. The use of wildcards (also called F- designation) is implemented. Dedicated functions ease plotting the results. See Tvedebrink et al. (2012) <doi:10.1016/j.fsigen.2011.08.001>. Compute the distribution of the numbers of alleles in DNA mixtures. See Tvedebrink (2013) <doi:10.1016/j.fsigss.2013.10.142>.
Dataset containing information about job listings for data science job roles.
Query database tables over a DBI connection using data.table syntax. Attach database schemas to the search path. Automatically merge using foreign key constraints.
Implement the methods proposed by Ahmad & Dey (2007) <doi:10.1016/j.datak.2007.03.016> in calculating the dissimilarity matrix at the presence of mixed attributes. This Package includes functions to discretize quantitative variables, calculate conditional probability for each pair of attribute values, distance between every pair of attribute values, significance of attributes, calculate dissimilarity between each pair of objects.
The dfmirroR package allows users to input a data frame, simulate some number of observations based on specified columns of that data frame, and then outputs a string that contains the code to re-create the simulation. The goal is to both provide workable test data sets and provide users with the information they need to set up reproducible examples with team members. This package was created out of a need to share examples in cases where data are private and where a full data frame is not needed for testing or coordinating.
Phase I/II adaptive dose-finding design for single-agent Molecularly Targeted Agent (MTA), according to the paper "Phase I/II Dose-Finding Design for Molecularly Targeted Agent: Plateau Determination using Adaptive Randomization", Riviere Marie-Karelle et al. (2016) <doi:10.1177/0962280216631763>.
This package provides a set of control charts for batch processes based on the VAR model. The package contains the implementation of T2.var and W.var control charts based on VAR model coefficients using the couple vectors theory. In each time-instant the VAR coefficients are estimated from a historical in-control dataset and a decision rule is made for online classifying of a new batch data. Those charts allow efficient online monitoring since the very first time-instant. The offline version is available too. In order to evaluate the chart's performance, this package contains functions to generate batch data for offline and online monitoring.See in Danilo Marcondes Filho and Marcio Valk (2020) <doi:10.1016/j.ejor.2019.12.038>.
This package provides a function for plotting maps of agricultural field experiments that are laid out in grids. See Ryder (1981) <doi:10.1017/S0014479700011601>.
This package provides a datetime range picker widget for usage in Shiny'. It creates a calendar allowing to select a start date and an end date as well as two fields allowing to select a start time and an end time.
This package provides a wrapper on top of the Domino Data Python SDK library. It lets you query and access Domino Data Sources directly from your R environment. Under the hood, Domino Data R SDK leverages the API provided by the Domino Data Python SDK', which must be installed as a prerequisite. Domino is a platform that makes it easy to run your code on scalable hardware, with integrated version control and collaboration features designed for analytical workflows. See <https://docs.dominodatalab.com/en/latest/api_guide/140b48/domino-data-api> for more information.
This package performs reference based multiple imputation of recurrent event data based on a negative binomial regression model, as described by Keene et al (2014) <doi:10.1002/pst.1624>.
Perform nonparametric Bayesian analysis using Dirichlet processes without the need to program the inference algorithms. Utilise included pre-built models or specify custom models and allow the dirichletprocess package to handle the Markov chain Monte Carlo sampling. Our Dirichlet process objects can act as building blocks for a variety of statistical models including and not limited to: density estimation, clustering and prior distributions in hierarchical models. See Teh, Y. W. (2011) <https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf>, among many other sources.
Given count data from two conditions, it determines which transcripts are differentially expressed across the two conditions using Bayesian inference of the parameters of a bottom-up model for PCR amplification. This model is developed in Ndifon Wilfred, Hilah Gal, Eric Shifrut, Rina Aharoni, Nissan Yissachar, Nir Waysbort, Shlomit Reich Zeliger, Ruth Arnon, and Nir Friedman (2012), <http://www.pnas.org/content/109/39/15865.full>, and results in a distribution for the counts that is a superposition of the binomial and negative binomial distribution.
The Demographic Table in R combines contingency table for categorical variables, mean and standard deviation for continuous variables. t-test, chi-square test and Fisher's exact test calculated the p-value of two groups. The standardized mean difference were performed with 95 % confident interval, and writing table into document file.
An efficient and convenient set of functions to perform differential network estimation through the use of alternating direction method of multipliers optimization with a variety of loss functions.
This package provides an interface to D4Science StorageHub API (<https://dev.d4science.org/>). Allows to get user profile, and perform actions over the StorageHub (workspace) including creation of folders, files management (upload/update/deletion/sharing), and listing of stored resources.
This package provides tools to help the design and analysis of resilient non-inferiority trials. These include functions for sample size calculations and analyses of trials, with either a risk difference, risk ratio or arc-sine difference margin, and a function to run simulations to design a trial with the methods described in Quartagno et al. (2019) <arXiv:1905.00241>.