This package provides functions for converting among CIE XYZ, xyY
, Lab, and Luv. Calculate Correlated Color Temperature (CCT) and the Planckian and daylight loci. The XYZs of some standard illuminants and some standard linear chromatic adaptation transforms (CATs) are included. Three standard color difference metrics are included, plus the forward direction of the CIECAM02 color appearance model.
Bindings for the Tabula <https://tabula.technology/> Java library, which can extract tables from PDF files. This tool can reduce time and effort in data extraction processes in fields like investigative journalism. It allows for automatic and manual table extraction, the latter facilitated through a Shiny interface, enabling manual areas selection\ with a computer mouse for data retrieval.
Create highly customized tables with this simple and dependency-free package. Data frames can be converted to HTML', LaTeX
', Markdown', Word', PNG', PDF', or Typst tables. The user interface is minimalist and easy to learn. The syntax is concise. HTML tables can be customized using the flexible Bootstrap framework, and LaTeX
code with the tabularray package.
This package provides a set of wrappers intended to check, read and download information from the Wikimedia sources. It is specifically created to work with names of celebrities, in which case their information and statistics can be downloaded. Additionally, it also builds links and snippets to use in combination with the function gallery()
in netCoin
package.
The package AlphaBeta
is a computational method for estimating epimutation rates and spectra from high-throughput DNA methylation data in plants. The method has been specifically designed to:
analyze germline epimutations in the context of multi-generational mutation accumulation lines;
analyze somatic epimutations in the context of plant development and aging.
This package provides a suite of helper functions for checking and manipulating TCGA data including data obtained from the curatedTCGAData
experiment package. These functions aim to simplify and make working with TCGA data more manageable. Exported functions include those that import data from flat files into Bioconductor objects, convert row annotations, and identifier translation via the GDC API.
This package provides an R interface to the nanoarrow
C library and the Apache Arrow application binary interface. Functions to import and export ArrowArray
, ArrowSchema
, and ArrowArrayStream
C structures to and from R objects are provided alongside helpers to facilitate zero-copy data transfer among R bindings to libraries implementing the Arrow C data interface.
Application of reinsurance treaties to claims portfolios. The package creates a class Claims whose objective is to store claims and premiums, on which different treaties can be applied. A statistical analysis can then be applied to measure the impact of reinsurance, producing a table or graphical output. This package can be used for estimating the impact of reinsurance on several portfolios or for pricing treaties through statistical analysis. Documentation for the implemented methods can be found in "Reinsurance: Actuarial and Statistical Aspects" by Hansjöerg Albrecher, Jan Beirlant, Jozef L. Teugels (2017, ISBN: 978-0-470-77268-3) and "REINSURANCE: A Basic Guide to Facultative and Treaty Reinsurance" by Munich Re (2010) <https://www.munichre.com/site/mram/get/documents_E96160999/mram/assetpool.mr_america/PDFs/3_Publications/reinsurance_basic_guide.pdf>.
The main purpose of this package is to propose a transparent methodological framework to compare bioregionalisation methods based on hierarchical and non-hierarchical clustering algorithms (Kreft & Jetz (2010) <doi:10.1111/j.1365-2699.2010.02375.x>) and network algorithms (Lenormand et al. (2019) <doi:10.1002/ece3.4718> and Leroy et al. (2019) <doi:10.1111/jbi.13674>).
This package performs simple correspondence analysis on a two-way contingency table, or multiple correspondence analysis (homogeneity analysis) on data with p categorical variables, and produces bootstrap-based elliptical confidence regions around the projected coordinates for the category points. Includes routines to plot the results in a variety of styles. Also reports the standard numerical output for correspondence analysis.
Given $p$-dimensional training data containing $d$ groups (the design space), a classification algorithm (classifier) predicts which group new data belongs to. Generally the input to these algorithms is high dimensional, and the boundaries between groups will be high dimensional and perhaps curvilinear or multi-faceted. This package implements methods for understanding the division of space between the groups.
Given the non-negative data and its distribution, the package estimates the rank parameter for Non-negative Matrix Factorization. The method is based on hypothesis testing, using a deconvolved bootstrap distribution to assess the significance level accurately despite the large amount of optimization error. The distribution of the non-negative data can be either Normal distributed or Poisson distributed.
This package provides an interactive viewer for data.frame and tibble objects using shiny <https://shiny.posit.co/> and DT <https://rstudio.github.io/DT/>. It supports complex filtering, column selection, and automatic generation of reproducible dplyr <https://dplyr.tidyverse.org/> code for data manipulation. The package is designed for ease of use in data exploration and reporting workflows.
An interactive shiny'-based tool for quality assurance and quality control (QA/QC) of eddy covariance flux tower data processing. It generates data-point removal code via user-directed selection from a scatterplot, and can export a cleaned .csv with removed points set to NA plus an R script for reproducibility. Reference: Key (2025) <DOI:10.5281/zenodo.15597159>.
Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
An implementation of the nonnegative garrote method that incorporates hierarchical relationships among variables. The core function, HiGarrote()
, offers an automated approach for analyzing experiments while respecting hierarchical structures among effects. For methodological details, refer to Yu and Joseph (2025) <doi:10.1080/00224065.2025.2513508>. This work is supported by U.S. National Science Foundation grant DMS-2310637.
Based on large margin principle, this package performs feature selection methods: "IM4E"(Iterative Margin-Maximization under Max-Min Entropy Algorithm); "Immigrate"(Iterative Max-Min Entropy Margin-Maximization with Interaction Terms Algorithm); "BIM"(Boosted version of IMMIGRATE algorithm); "Simba"(Iterative Search Margin Based Algorithm); "LFE"(Local Feature Extraction Algorithm). This package also performs prediction for the above feature selection methods.
Pipeline for Genome-Wide Association Study using Multi-Locus Mixed Model from Segura V, Vilhjálmsson BJ et al. (2012) <doi:10.1038/ng.2314>. The pipeline include detection of associated SNPs with MLMM, model selection by lowest eBIC
and p-value threshold, estimation of the effects of the SNPs in the selected model and graphical functions.
Implementation of the Monothetic Clustering algorithm (Chavent, 1998 <doi:10.1016/S0167-8655(98)00087-7>) on continuous data sets. A lot of extensions are included in the package, including applying Monothetic clustering on data sets with circular variables, visualizations with the results, and permutation and cross-validation based tests to support the decision on the number of clusters.
Fit Maximum Entropy Optimality Theory models to data sets, generate the predictions made by such models for novel data, and compare the fit of different models using a variety of metrics. The package is described in Mayer, C., Tan, A., Zuraw, K. (in press) <https://sites.socsci.uci.edu/~cjmayer/papers/cmayer_et_al_maxent_ot_accepted.pdf>.
This package provides a graphical user interface to apply an advanced method optimization algorithm to various sampling and analysis instruments. This includes generating experimental designs, uploading and viewing data, and performing various analyses to determine the optimal method. Details of the techniques used in this package are published in Gamble, Granger, & Mannion (2024) <doi:10.1021/acs.analchem.3c05763>.
Use optimization to estimate weights that balance covariates for binary, multinomial, and continuous treatments in the spirit of Zubizarreta (2015) <doi:10.1080/01621459.2015.1023805>. The degree of balance can be specified for each covariate. In addition, sampling weights can be estimated that allow a sample to generalize to a population specified with given target moments of covariates.
Personalize drug regimens using individual pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-PD) profiles. By combining therapeutic drug monitoring (TDM) data with a population model, posologyr offers accurate posterior estimates and helps compute optimal individualized dosing regimens. The empirical Bayes estimates are computed following the method described by Kang et al. (2012) <doi:10.4196/kjpp.2012.16.2.97>.
The Prize-Collecting Steiner Tree problem asks to find a subgraph connecting a given set of vertices with the most expensive nodes and least expensive edges. Since it is proven to be NP-hard, exact and efficient algorithm does not exist. This package provides convenient functionality for obtaining an approximate solution to this problem using loopy belief propagation algorithm.