This package creates some tables of clinical study. Table 1 is created by table1() to describe baseline characteristics, which is essential in every clinical study. Created by table2(), the function of Table 2 is to explore influence factors. And Table 3 created by table3() is able to make stratified analysis.
RLassoCox is a package that implements the RLasso-Cox model proposed by Wei Liu. The RLasso-Cox model integrates gene interaction information into the Lasso-Cox model for accurate survival prediction and survival biomarker discovery. It is based on the hypothesis that topologically important genes in the gene interaction network tend to have stable expression changes. The RLasso-Cox model uses random walk to evaluate the topological weight of genes, and then highlights topologically important genes to improve the generalization ability of the Lasso-Cox model. The RLasso-Cox model has the advantage of identifying small gene sets with high prognostic performance on independent datasets, which may play an important role in identifying robust survival biomarkers for various cancer types.
r-kegggraph is an interface between Kegg Pathway database and graph object as well as a collection of tools to analyze, dissect and visualize these graphs. It parses the regularly updated kgml (Kegg XML) files into graph models maintaining all essential pathway attributes. The package offers functionalities including parsing, graph operation, visualization and etc.
This package contains routines for logspline density estimation. The function oldlogspline() uses the same algorithm as the logspline package version 1.0.x; i.e., the Kooperberg and Stone (1992) algorithm (with an improved interface). The recommended routine logspline() uses an algorithm from Stone et al (1997).
The range of functions provided by this package makes it possible to draw highly versatile genomic sequence logos. Features include, but are not limited to, modifying colour schemes and fonts used to draw the logo, generating multiple logo plots, and aiding the visualisation with annotations. Sequence logos can easily be combined with other ggplot2 plots.
This package provides a graph implementation that can be thought of as two tidy data frames describing node and edge data respectively. It provides an approach to manipulate these two virtual data frames using the API defined in the dplyr package, and it also provides tidy interfaces to a lot of common graph algorithms.
This package provides an R interface to the Embedded COnic Solver (ECOS), an efficient and robust C library for convex problems. Conic and equality constraints can be specified in addition to integer and boolean variable constraints for mixed-integer problems. This R interface is inspired by the Python interface and has similar calling conventions.
This package provides a user-friendly interface to map on-targets and off-targets of CRISPR gRNA spacer sequences using bwa. The alignment is fast, and can be performed using either commonly-used or custom CRISPR nucleases. The alignment can work with any reference or custom genomes. Currently not supported on Windows machines.
MWASTools provides a complete pipeline to perform metabolome-wide association studies. Key functionalities of the package include: quality control analysis of metabonomic data; MWAS using different association models (partial correlations; generalized linear models); model validation using non-parametric bootstrapping; visualization of MWAS results; NMR metabolite identification using STOCSY; and biological interpretation of MWAS results.
The purpose of this package is to perform Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files. PathoStat provides various functionalities including Relative Abundance charts, Diversity estimates and plots, tests of Differential Abundance, Time Series visualization, and Core OTU analysis.
This package provides tools for downloading hourly averages, daily maximums and minimums from each of the pollution, wind, and temperature measuring stations or geographic zones in the Mexico City metro area. The package also includes the locations of each of the stations and zones. See <http://aire.cdmx.gob.mx/> for more information.
Small toolbox for data analyses in environmental chemistry and ecotoxicology. Provides, for example, calibration() to calculate calibration curves and corresponding limits of detection (LODs) and limits of quantification (LOQs) according to German DIN 32645 (2008). texture() makes it easy to estimate soil particle size distributions from hydrometer measurements (ASTM D422-63, 2007).
Create local, regional, and global explanations for any machine learning model with forward marginal effects. You provide a model and data, and fmeffects computes feature effects. The package is based on the theory in: C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bischl, and C. Heumann (2022) <doi:10.48550/arXiv.2201.08837>.
Geostatistical modelling facilities using SpatRaster and SpatVector objects are provided. Non-Gaussian models are fit using INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) <doi:10.18637/jss.v063.i12>. The RandomFields package is available at <https://www.wim.uni-mannheim.de/schlather/publications/software>.
An extension of ggplot2 for creating complex genomic maps. It builds on the power of ggplot2 and tidyverse adding new ggplot2'-style geoms & positions and dplyr'-style verbs to manipulate the underlying data. It implements a layout concept inspired by ggraph and introduces tracks to bring tidiness to the mess that is genomics data.
This package provides a quick and easy way of plotting the columns of two matrices or data frames against each other using ggplot2'. Although ggmatplot doesn't provide the same flexibility as ggplot2', it can be used as a workaround for having to wrangle wide format data into long format for plotting with ggplot2'.
This package implements bootstrap methods for linear regression models with errors following a time-varying process, focusing on approximating the distribution of the least-squares estimator for regression models with locally stationary errors. It enables the construction of bootstrap and classical confidence intervals for regression coefficients, leveraging intensive simulation studies and real data analysis.
Solves quadratic programming problems where the Hessian is represented as the product of two matrices. Thanks to Greg Hunt for helping getting this version back on CRAN. The methods in this package are described in: Ormerod, Wand and Koch (2008) "Penalised spline support vector classifiers: computational issues" <doi:10.1007/s00180-007-0102-8>.
Fits the Multiple Random Dot Product Graph Model and performs a test for whether two networks come from the same distribution. Both methods are proposed in Nielsen, A.M., Witten, D., (2018) "The Multiple Random Dot Product Graph Model", arXiv preprint <arXiv:1811.12172> (Submitted to Journal of Computational and Graphical Statistics).
This package provides methods for assessing the performance of a prediction model with respect to identifying patient-level treatment benefit. All methods are applicable for continuous and binary outcomes, and for any type of statistical or machine-learning prediction model as long as it uses baseline covariates to predict outcomes under treatment and control.
Calculate parametric mortality and Fertility models, following packages BaSTA in Colchero, Jones and Rebke (2012) <doi:10.1111/j.2041-210X.2012.00186.x> and BaFTA <https://github.com/fercol/BaFTA>, summary statistics (e.g. ageing rates, life expectancy, lifespan equality, etc.), life table and product limit estimators from census data.
Figures rendered on graphics devices are usually rescaled to fit pre-determined device dimensions. plotscale implements the reverse: desired plot dimensions are specified and device dimensions are calculated to accommodate marginal material, giving consistent proportions for plot elements. Default methods support grid graphics such as lattice and ggplot. See "example('devsize')" and "vignette('plotscale')".
This package provides functions to compute the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89>. Several options are available to customize the model, such as the possibility to fine-tune the distance friction functions or to use custom distance matrices. Some computations are parallelized to improve their efficiency.
This package provides functions to simulate point prevalence studies (PPSs) of healthcare-associated infections (HAIs) and to convert prevalence to incidence in steady state setups. Companion package to the preprint Willrich et al., From prevalence to incidence - a new approach in the hospital setting; <doi:10.1101/554725> , where methods are explained in detail.