An interactive shiny'-based tool for exploration and quality assurance and quality control (QA/QC) of eddy covariance flux tower data processing. It generates data-point removal code via user-directed selection from a scatterplot, and can export a cleaned .csv with removed points set to NA plus an R script for reproducibility. Reference: Key (2025) <DOI:10.5281/zenodo.15597159>.
Estimation of the cutpoint defined by the Generalized Symmetry point in a binary classification setting based on a continuous diagnostic test or marker. Two methods have been implemented to construct confidence intervals for this optimal cutpoint, one based on the Generalized Pivotal Quantity and the other based on Empirical Likelihood. Numerical and graphical outputs for these two methods are easily obtained.
This package implements maximum likelihood estimation for Gaussian processes, supporting both isotropic and separable models with predictive capabilities. Includes penalized likelihood estimation following Li and Sudjianto (2005, <doi:10.1198/004017004000000671>), using score-based metrics that account for uncertainty (See Gneiting and Raftery 2007, <doi:10.1198/016214506000001437>). Includes cross validation techniques for tuning parameter selection. Designed specifically for small datasets.
Simulating single cell RNA-seq data with complicated structure. This package is developed based on the Splat method (Zappia, Phipson and Oshlack (2017) <doi:10.1186/s13059-017-1305-0>). GeneScape incorporates additional features to simulate single cell RNA-seq data with complicated differential expression and correlation structures, such as sub-cell-types, correlated genes (pathway genes) and hub genes.
Estimation procedures and goodness-of-fit test for several Markov regime switching models and mixtures of bivariate copula models. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses Rosenblatt's transform and parametric bootstrap to estimate the p-value. The proposed methodologies are described in Nasri, Remillard and Thioub (2020) <doi:10.1002/cjs.11534>.
This package provides a low-dependency implementation of GSIF::mpspline() <https://r-forge.r-project.org/scm/viewvc.php/pkg/R/mpspline.R?view=markup&revision=240&root=gsif>, which applies a mass-preserving spline to soil attributes. Splining soil data is a safe way to make continuous down-profile estimates of attributes measured over discrete, often discontinuous depth intervals.
This package provides a simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017)<doi:10.1002/jrsm.1240>, test of homogeneity (Pigott, 2012)<doi:10.1007/978-1-4614-2278-5>, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037/1082-989X.9.4.426>.
Use optimization to estimate weights that balance covariates for binary, multi-category, continuous, and multivariate treatments in the spirit of Zubizarreta (2015) <doi:10.1080/01621459.2015.1023805>. The degree of balance can be specified for each covariate. In addition, sampling weights can be estimated that allow a sample to generalize to a population specified with given target moments of covariates.
Prediction limits for the Poisson distribution are produced from both frequentist and Bayesian viewpoints. Limiting results are provided in a Bayesian setting with uniform, Jeffreys and gamma as prior distributions. More details on the methodology are discussed in Bejleri and Nandram (2018) <doi:10.1080/03610926.2017.1373814> and Bejleri, Sartore and Nandram (2021) <doi:10.1007/s42952-021-00157-x>.
Aggregates large single-cell data into metacell dataset by merging together gene expression of very similar cells. SuperCell uses velocyto.R <doi:10.1038/s41586-018-0414-6> <https://github.com/velocyto-team/velocyto.R> for RNA velocity. We also recommend installing scater Bioconductor package <doi:10.18129/B9.bioc.scater> <https://bioconductor.org/packages/release/bioc/html/scater.html>.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
This package provides a user-friendly wrapper for web automation, using either chromote or selenium'. Provides a simple and consistent API to make web scraping and testing scripts easy to write and understand. Elements are lazy, and automatically wait for the website to be valid, resulting in reliable and reproducible code, with no visible impact on the experience of the programmer.
Work with containers over the Docker API. Rather than using system calls to interact with a docker client, using the API directly means that we can receive richer information from docker. The interface in the package is automatically generated using the OpenAPI (a.k.a., swagger') specification, and all return values are checked in order to make them type stable.
Here we provide tools for the computation and factorization of high-dimensional tensor products that are formed by smaller matrices. The methods are based on properties of Kronecker products (Searle 1982, p. 265, ISBN-10: 0470009616). We evaluated this methodology by benchmark testing and illustrated its use in Gaussian Linear Models ('Lopez-Cruz et al., 2024') <doi:10.1093/g3journal/jkae001>.
The goal of tidyplate is to help researchers convert different types of microplates into tibbles which can be used in data analysis. It accepts xlsx and csv files formatted in a specific way as input. It supports all types of standard microplate formats such as 6-well, 12-well, 24-well, 48-well, 96-well, 384-well, and, 1536-well plates.
This package is an extension to CellNOptR. It contains additional functionality needed to simulate and train a prior knowledge network to experimental data using constrained fuzzy logic (cFL, rather than Boolean logic as is the case in CellNOptR). Additionally, this package will contain functions to use for the compilation of multiple optimization results (either Boolean or cFL).
gINTomics is an R package for Multi-Omics data integration and visualization. gINTomics is designed to detect the association between the expression of a target and of its regulators, taking into account also their genomics modifications such as Copy Number Variations (CNV) and methylation. What is more, gINTomics allows integration results visualization via a Shiny-based interactive app.
OOMPA offers R packages for gene expression and proteomics analysis. OOMPA uses S4 classes to construct object-oriented tools with a consistent user interface. All higher level analysis tools in OOMPA are compatible with the eSet classes defined in BioConductor. The lower level processing tools offer an alternative to parts of BioConductor, but can also be used to enhance existing BioConductor packages.
Provides implementations of functions which have been introduced in R since version 3.0.0. The backports are conditionally exported which results in R resolving the function names to the version shipped with R (if available) and uses the implemented backports as fallback. This way package developers can make use of the new functions without worrying about the minimum required R version.
This package provides functions to build tables with advanced layout elements such as row spanners, column spanners, table spanners, zebra striping, and more. While allowing advanced layout, the underlying CSS-structure is simple in order to maximize compatibility with word processors such as LibreOffice. The package also contains a few text formatting functions that help outputting text compatible with HTML or LaTeX.
This package provides ggplot2 geoms filled with various patterns. It includes a patterned version of every ggplot2 geom that has a region that can be filled with a pattern. It provides a suite of ggplot2 aesthetics and scales for controlling pattern appearances. It supports over a dozen builtin patterns (every pattern implemented by gridpattern) as well as allowing custom user-defined patterns.
RawTherapee is a raw image processing suite. It comprises a subset of image editing operations specifically aimed at non-destructive raw photo post-production and is primarily focused on improving a photographer's workflow by facilitating the handling of large numbers of images. Most raw formats are supported, including Pentax Pixel Shift, Canon Dual-Pixel, and those from Foveon and X-Trans sensors.
This package provides functions for the Bayesian analysis of extreme value models. The rust package <https://cran.r-project.org/package=rust> is used to simulate a random sample from the required posterior distribution. The functionality of revdbayes is similar to the evdbayes package <https://cran.r-project.org/package=evdbayes>, which uses Markov Chain Monte Carlo ('MCMC') methods for posterior simulation. In addition, there are functions for making inferences about the extremal index, using the models for threshold inter-exceedance times of Suveges and Davison (2010) <doi:10.1214/09-AOAS292> and Holesovsky and Fusek (2020) <doi:10.1007/s10687-020-00374-3>. Also provided are d,p,q,r functions for the Generalised Extreme Value ('GEV') and Generalised Pareto ('GP') distributions that deal appropriately with cases where the shape parameter is very close to zero.
R Interface to AutoKeras <https://autokeras.com/>. AutoKeras is an open source software library for Automated Machine Learning (AutoML). The ultimate goal of AutoML is to provide easily accessible deep learning tools to domain experts with limited data science or machine learning background. AutoKeras provides functions to automatically search for architecture and hyperparameters of deep learning models.