Interface for accessing the Fortnite Ecosystem API, allowing users to retrieve island metadata and engagement metrics. The package provides functions to search for Fortnite Creative islands, retrieve detailed metadata about specific islands including titles, descriptions, and tags, and access engagement metrics such as daily active users and play duration. It supports pagination for large result sets and time-series analysis of island performance. The API endpoint is <https://api.fortnite.com/ecosystem/v1>.
The basic idea of this package is provides some tools to help the researcher to work with geostatistics. Initially, we present a collection of functions that allow the researchers to deal with spatial data using bootstrap procedure. There are five methods available and two ways to display them: bootstrap confidence interval - provides a two-sided bootstrap confidence interval; bootstrap plot - a graphic with the original variogram and each of the B bootstrap variograms.
This package provides functions to conduct robust inference in difference-in-differences and event study designs by implementing the methods developed in Rambachan & Roth (2023) <doi:10.1093/restud/rdad018>, "A More Credible Approach to Parallel Trends" [Previously titled "An Honest Approach..."]. Inference is conducted under a weaker version of the parallel trends assumption. Uniformly valid confidence sets are constructed based upon conditional confidence sets, fixed-length confidence sets and hybridized confidence sets.
This package provides functions and classes to compute, handle and visualise incidence from dated events for a defined time interval. Dates can be provided in various standard formats. The class incidence is used to store computed incidence and can be easily manipulated, subsetted, and plotted. In addition, log-linear models can be fitted to incidence objects using fit'. This package is part of the RECON (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis.
Utility functions for mutational signature analysis as described in Alexandrov, L. B. (2020) <doi:10.1038/s41586-020-1943-3>. This package provides two groups of functions. One is for dealing with mutational signature "exposures" (i.e. the counts of mutations in a sample that are due to each mutational signature). The other group of functions is for matching or comparing sets of mutational signatures. mSigTools
stands for mutational Signature analysis Tools.
Computation of an estimation of the long-memory parameters and the long-run covariance matrix using a multivariate model (Lobato (1999) <doi:10.1016/S0304-4076(98)00038-4>; Shimotsu (2007) <doi:10.1016/j.jeconom.2006.01.003>). Two semi-parametric methods are implemented: a Fourier based approach (Shimotsu (2007) <doi:10.1016/j.jeconom.2006.01.003>) and a wavelet based approach (Achard and Gannaz (2016) <doi:10.1111/jtsa.12170>).
Enhanced RTF wrapper written in R for use with existing R tables packages such as Huxtable or GT'. This package fills a gap where tables in certain packages can be written out to RTF, but cannot add certain metadata or features to the document that are required/expected in a report for a regulatory submission, such as multiple levels of titles and footnotes, making the document landscape, and controlling properties such as margins.
Psychometric mixture models based on flexmix infrastructure. At the moment Rasch mixture models with different parameterizations of the score distribution (saturated vs. mean/variance specification), Bradley-Terry mixture models, and MPT mixture models are implemented. These mixture models can be estimated with or without concomitant variables. See Frick et al. (2012) <doi:10.18637/jss.v048.i07> and Frick et al. (2015) <doi:10.1177/0013164414536183> for details on the Rasch mixture models.
We implement an adaptation of Jiang & Zeng's (1995) <https://www.genetics.org/content/140/3/1111> likelihood ratio test for testing the null hypothesis of pleiotropy against the alternative hypothesis, two separate quantitative trait loci. The test differs from that in Jiang & Zeng (1995) <https://www.genetics.org/content/140/3/1111> and that in Tian et al. (2016) <doi:10.1534/genetics.115.183624> in that our test accommodates multiparental populations.
Implementation of the BLEU-Score in C++ to evaluate the quality of generated text. The BLEU-Score, introduced by Papineni et al. (2002) <doi:10.3115/1073083.1073135>, is a metric for evaluating the quality of generated text. It is based on the n-gram overlap between the generated text and reference texts. Additionally, the package provides some smoothing methods as described in Chen and Cherry (2014) <doi:10.3115/v1/W14-3346>.
Generate synthetic time series from commonly used statistical models, including linear, nonlinear and chaotic systems. Applications to testing methods can be found in Jiang, Z., Sharma, A., & Johnson, F. (2019) <doi:10.1016/j.advwatres.2019.103430> and Jiang, Z., Sharma, A., & Johnson, F. (2020) <doi:10.1029/2019WR026962> associated with an open-source tool by Jiang, Z., Rashid, M. M., Johnson, F., & Sharma, A. (2020) <doi:10.1016/j.envsoft.2020.104907>.
The steepness package computes steepness as a property of dominance hierarchies. Steepness is defined as the absolute slope of the straight line fitted to the normalized David's scores. The normalized David's scores can be obtained on the basis of dyadic dominance indices corrected for chance or by means of proportions of wins. Given an observed sociomatrix, it computes hierarchy's steepness and estimates statistical significance by means of a randomization test.
Obtain parameters of Svensson's Method, including percentage agreement, systematic change and individual change. Also, the contingency table can be generated. Svensson's Method is a rank-invariant nonparametric method for the analysis of ordered scales which measures the level of change both from systematic and individual aspects. For the details, please refer to Svensson E. Analysis of systematic and random differences between paired ordinal categorical data [dissertation]. Stockholm: Almqvist & Wiksell International; 1993.
This package provides functions for preparing and analyzing animal tracking data, with the intention of identifying areas which are potentially important at the population level and therefore of conservation interest. Areas identified using this package may be checked against global or regionally-defined criteria, such as those set by the Key Biodiversity Area program. The method published herein is described in full in Beal et al. 2021 <doi:10.1111/2041-210X.13713>.
An interface to the AutoDesk
API Platform including the Authentication API for obtaining authentication to the AutoDesk
Forge Platform, Data Management API for managing data across the platform's cloud services, Design Automation API for performing automated tasks on design files in the cloud, Model Derivative API for translating design files into different formats, sending them to the viewer app, and extracting design data, and Viewer for rendering 2D and 3D models.
Indicators and measures by country and time describe what happens at economic and social levels. This package provides functions to calculate several measures of convergence after imputing missing values. The automated downloading of Eurostat data, followed by the production of country fiches and indicator fiches, makes possible to produce automated reports. The Eurofound report (<doi:10.2806/68012>) "Upward convergence in the EU: Concepts, measurements and indicators", 2018, is a detailed presentation of convergence.
Rcpp implementation of the multivariate Kim filter, which combines the Kalman and Hamilton filters for state probability inference. The filter is designed for state space models and can handle missing values and exogenous data in the observation and state equations. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
Without imposing stringent distributional assumptions or shape restrictions, nonparametric estimation has been popular in economics and other social sciences for counterfactual analysis, program evaluation, and policy recommendations. This package implements a novel density (and derivatives) estimator based on local polynomial regressions, documented in Cattaneo, Jansson and Ma (2022) <doi:10.18637/jss.v101.i02>: lpdensity()
to construct local polynomial based density (and derivatives) estimator, and lpbwdensity()
to perform data-driven bandwidth selection.
Compute power and sample size for linear models of longitudinal data. Supported models include mixed-effects models and models fit by generalized least squares and generalized estimating equations. The package is described in Iddi and Donohue (2022) <DOI:10.32614/RJ-2022-022>. Relevant formulas are derived by Liu and Liang (1997) <DOI:10.2307/2533554>, Diggle et al (2002) <ISBN:9780199676750>, and Lu, Luo, and Chen (2008) <DOI:10.2202/1557-4679.1098>.
Clean the MS/MS spectrum, calculate spectral entropy, unweighted entropy similarity, and entropy similarity for mass spectrometry data. The entropy similarity is a novel similarity measure for MS/MS spectra which outperform the widely used dot product similarity in compound identification. For more details, please refer to the paper: Yuanyue Li et al. (2021) "Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification" <doi:10.1038/s41592-021-01331-z>.
This package implements two differentially private algorithms for estimating L2-regularized logistic regression coefficients. A randomized algorithm F is epsilon-differentially private (C. Dwork, Differential Privacy, ICALP 2006 <DOI:10.1007/11681878_14>), if |log(P(F(D) in S)) - log(P(F(D') in S))| <= epsilon for any pair D, D of datasets that differ in exactly one record, any measurable set S, and the randomness is taken over the choices F makes.
Data analysis based on panel partially-observed Markov process (PanelPOMP
) models. To implement such models, simulate them and fit them to panel data, panelPomp
extends some of the facilities provided for time series data by the pomp package. Implemented methods include filtering (panel particle filtering) and maximum likelihood estimation (Panel Iterated Filtering) as proposed in Breto, Ionides and King (2020) "Panel Data Analysis via Mechanistic Models" <doi:10.1080/01621459.2019.1604367>.
This package provides a system to implement the Q-Q boxplot. It is implemented as an extension to ggplot2'. The Q-Q boxplot is an amalgam of the boxplot and the Q-Q plot and allows the user to rapidly examine summary statistics and tail behavior for multiple distributions in the same pane. As an extension of the ggplot2 implementation of the boxplot, possible modifications to the boxplot extend to the Q-Q boxplot.
ATAC-seq, an assay for Transposase-Accessible Chromatin using sequencing, is a rapid and sensitive method for chromatin accessibility analysis. It was developed as an alternative method to MNase-seq, FAIRE-seq and DNAse-seq. The ATACseqQC package was developed to help users to quickly assess whether their ATAC-seq experiment is successful. It includes diagnostic plots of fragment size distribution, proportion of mitochondria reads, nucleosome positioning pattern, and CTCF or other Transcript Factor footprints.