Stanford CoreNLP annotation client. Stanford CoreNLP <https://stanfordnlp.github.io/CoreNLP/index.html> integrates all NLP tools from the Stanford Natural Language Processing Group, including a part-of-speech (POS) tagger, a named entity recognizer (NER), a parser, and a coreference resolution system, and provides model files for the analysis of English. More information can be found in the README.
This package contains statistical inference tools applied to Partial Linear Regression (PLR) models. Specifically, point estimation, confidence intervals estimation, bandwidth selection, goodness-of-fit tests and analysis of covariance are considered. Kernel-based methods, combined with ordinary least squares estimation, are used and time series errors are allowed. In addition, these techniques are also implemented for both parametric (linear) and nonparametric regression models.
We innovatively defined a pathway mutation accumulate perturbation score (PMAPscore) to reflect the position and the cumulative effect of the genetic mutations at the pathway level. Based on the PMAPscore of pathways, identified prognosis-related pathways altered by somatic mutation and predict immunotherapy efficacy by constructing a multiple-pathway-based risk model (Tarca, Adi Laurentiu et al (2008) <doi:10.1093/bioinformatics/btn577>).
Generates predicted stage change days for an insect, based on daily temperatures and development rate parameters, as developed by Pollard (2014) <http://mural.maynoothuniversity.ie/view/ethesisauthor/Pollard=3ACiaran_P=2E=3A=3A.html>. A few example datasets are included and implemented for P. vulgatissima, the blue willow beetle, but the approach can be readily applied to other species that display similar behaviour.
Fetches the PREDICTS database and relevant metadata from the Data Portal at the Natural History Museum, London <https://data.nhm.ac.uk>. Data were collated from over 400 existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from sites around the world. These data are described in Hudson et al. (2013) <doi:10.1002/ece3.2579>.
Convert text (and text in R objects) to Mocking SpongeBob case <https://knowyourmeme.com/memes/mocking-spongebob> and show them off in fun ways. CoNVErT TexT (AnD TeXt In r ObJeCtS) To MOCkINg SpoNgebOb CAsE <https://knowyourmeme.com/memes/mocking-spongebob> aND shOw tHem OFf IN Fun WayS.
Construct sketches of data via random subspace embeddings. For more details, see the following papers. Lee, S. and Ng, S. (2022). "Least Squares Estimation Using Sketched Data with Heteroskedastic Errors," Proceedings of the 39th International Conference on Machine Learning (ICML22), 162:12498-12520. Lee, S. and Ng, S. (2020). "An Econometric Perspective on Algorithmic Subsampling," Annual Review of Economics, 12(1): 45â 80.
This package implements a suite of sensitivity analysis tools that extends the traditional omitted variable bias framework and makes it easier to understand the impact of omitted variables in regression models, as discussed in Cinelli, C. and Hazlett, C. (2020), "Making Sense of Sensitivity: Extending Omitted Variable Bias." Journal of the Royal Statistical Society, Series B (Statistical Methodology) <doi:10.1111/rssb.12348>.
This package provides an R interface for interacting with the Tableau Server. It allows users to perform various operations such as publishing workbooks, refreshing data extracts, and managing users using the Tableau REST API (see <https://help.tableau.com/current/api/rest_api/en-us/REST/rest_api_ref.htm> for details). Additionally, it includes functions to perform manipulations on local Tableau workbooks.
This package performs robust estimation and inference when using covariate adjustment and/or covariate-adaptive randomization in randomized controlled trials. This package is trimmed to reduce the dependencies and validated to be used across industry. See "FDA's final guidance on covariate adjustment"<https://www.regulations.gov/docket/FDA-2019-D-0934>, Tsiatis (2008) <doi:10.1002/sim.3113>, Bugni et al. (2018) <doi:10.1080/01621459.2017.1375934>, Ye, Shao, Yi, and Zhao (2023)<doi:10.1080/01621459.2022.2049278>, Ye, Shao, and Yi (2022)<doi:10.1093/biomet/asab015>, Rosenblum and van der Laan (2010)<doi:10.2202/1557-4679.1138>, Wang et al. (2021)<doi:10.1080/01621459.2021.1981338>, Ye, Bannick, Yi, and Shao (2023)<doi:10.1080/24754269.2023.2205802>, and Bannick, Shao, Liu, Du, Yi, and Ye (2024)<doi:10.48550/arXiv.2306.10213>.
The ropenblas package (<https://prdm0.github.io/ropenblas/>) is useful for users of any GNU/Linux distribution. It will be possible to download, compile and link the OpenBLAS library (<https://www.openblas.net/>) with the R language, always by the same procedure, regardless of the GNU/Linux distribution used. With the ropenblas package it is possible to download, compile and link the latest version of the OpenBLAS library even the repositories of the GNU/Linux distribution used do not include the latest versions of OpenBLAS'. If of interest, older versions of the OpenBLAS library may be considered. Linking R with an optimized version of BLAS (<https://netlib.org/blas/>) may improve the computational performance of R code. The OpenBLAS library is an optimized implementation of BLAS that can be easily linked to R with the ropenblas package.
This is a slightly modified version of the standalone Rmath library from R, built to be used with the Rmath.jl Julia package. The main difference is that it is built to allow defining custom random number generating functions via C function pointers (see include/callback.h). When using the library, these should be defined before calling any of the random functions.
bioassayR is a computational tool that enables simultaneous analysis of thousands of bioassay experiments performed over a diverse set of compounds and biological targets. Unique features include support for large-scale cross-target analyses of both public and custom bioassays, generation of high throughput screening fingerprints (HTSFPs), and an optional preloaded database that provides access to a substantial portion of publicly available bioactivity data.
This package provides tools to convert plot function calls (using expression or formula) to grob or ggplot objects that are compatible with the grid and ggplot2 environment. With this package, we are able to e.g. use cowplot to align plots produced by base graphics, grid, lattice, vcd etc. by converting them to ggplot objects.
This package provides a minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates.
This package provides a graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the Shiny web application framework and works with the output of MCMC programs written in any programming language (and has extended functionality for Stan models fit using the rstan and rstanarm packages).
ExperimentHubData package for the mulea comprehensive overrepresentation and functional enrichment analyser R package. Here we provide ontologies (gene sets) in a data.frame for 27 different organisms, ranging from Escherichia coli to human, all acquired from publicly available data sources. Each ontology is provided with multiple gene and protein identifiers. Please see the NEWS file for a list of changes in each version.
Phantasus is a web-application for visual and interactive gene expression analysis. Phantasus is based on Morpheus – a web-based software for heatmap visualisation and analysis, which was integrated with an R environment via OpenCPU API. Aside from basic visualization and filtering methods, R-based methods such as k-means clustering, principal component analysis or differential expression analysis with limma package are supported.
Leveraging Monte Carlo simulations, this package provides tools for diagnosing regression models. It implements a parametric bootstrap framework to compute statistics, generates diagnostic envelopes to assess goodness-of-fit, and evaluates type I error control for Wald tests. By simulating data under the assumption that the model is true, it helps to identify model mis-specifications and enhances the reliability of the model inferences.
This package provides methods for the group testing identification problem: 1) Operating characteristics (e.g., expected number of tests) for commonly used hierarchical and array-based algorithms, and 2) Optimal testing configurations for these same algorithms. Methods for the group testing estimation problem: 1) Estimation and inference procedures for an overall prevalence, and 2) Regression modeling for commonly used hierarchical and array-based algorithms.
Reads demographic data from a variety of public data sources, extracting and harmonizing variables useful for the study of childfree individuals. The identification of childfree individuals and those with other family statuses uses Neal & Neal's (2024) "A Framework for Studying Adults who Neither have Nor Want Children" <doi:10.1177/10664807231198869>; A pre-print is available at <doi:10.31234/osf.io/fa89m>.
Reads European Data Format files EDF and EDF+, see <http://www.edfplus.info>, BioSemi Data Format files BDF, see <http://www.biosemi.com/faq/file_format.htm>, and BDF+ files, see <http://www.teuniz.net/edfbrowser/bdfplus%20format%20description.html>. The files are read in two steps: first the header is read and then the signals (using the header object as a parameter).
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>).
Understanding how features influence a specific response variable becomes crucial in classification problems, with applications ranging from medical diagnosis to customer behavior analysis. This packages provides tools to compute such an influence measure grounded on game theory concepts. In particular, the influence measures presented in Davila-Pena, Saavedra-Nieves, and Casas-Méndez (2024) <doi:10.48550/arXiv.2408.02481> can be obtained.