It provides functions to design historical controlled trials with survival outcome by group sequential method. The options for interim look boundaries are efficacy only, efficacy & futility or futility only. It also provides the function to monitor the trial for any unplanned look. The package is based on Jianrong Wu, Xiaoping Xiong (2016) <doi:10.1002/pst.1756> and Jianrong Wu, Yimei Li (2020) <doi:10.1080/10543406.2019.1684305>.
The different methods for defining, detecting, and categorising the extreme events known as heatwaves or cold-spells, as first proposed in Hobday et al. (2016) <doi: 10.1016/j.pocean.2015.12.014> and Hobday et al. (2018) <https://www.jstor.org/stable/26542662>. The functions in this package work on both air and water temperature data. These detection algorithms may be used on non-temperature data as well.
The improved trimmed weighted Hochberg procedure provides increased statistical power and relaxes the dependence assumptions for familywise error rate control compared to the original weighted Hochberg procedure. This package computes the boundaries required for implementing the proposed methodology and includes sample size optimization methods. See Gou, J., Chang, Y., Li, T., and Zhang, F.(2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.
Mouse-tracking, the analysis of mouse movements in computerized experiments, is a method that is becoming increasingly popular in the cognitive sciences. The mousetrap package offers functions for importing, preprocessing, analyzing, aggregating, and visualizing mouse-tracking data. An introduction into mouse-tracking analyses using mousetrap can be found in Wulff, Kieslich, Henninger, Haslbeck, & Schulte-Mecklenbeck (2023) <doi:10.31234/osf.io/v685r> (preprint: <https://osf.io/preprints/psyarxiv/v685r>).
This package provides methods for analyzing DNA methylation data via Most Recurrent Methylation Patterns (MRMPs). Supports cell-type annotation, spatial deconvolution, unsupervised clustering, and cancer cell-of-origin inference. Includes C-backed summaries for YAME â .cg/.cmâ files (overlap counts, log2 odds ratios, beta/depth aggregation), an XGBoost classifier, NNLS deconvolution, and plotting utilities. Scales to large spatial and single-cell methylomes and is robust to extreme sparsity.
Utility functions that may be of general interest but are specifically required by the NeuroAnatomy Toolbox ('nat'). Includes functions to provide a basic make style system to update files based on timestamp information, file locking and touch utility. Convenience functions for working with file paths include abs2rel', split_path and common_path'. Finally there are utility functions for working with zip and gzip files including integrity tests.
Read Protein Data Bank (PDB) files, performs its analysis, and presents the result using different visualization types including 3D. The package also has additional capability for handling Virus Report data from the National Center for Biotechnology Information (NCBI) database. Nature Structural Biology 10, 980 (2003) <doi:10.1038/nsb1203-980>. US National Library of Medicine (2021) <https://www.ncbi.nlm.nih.gov/datasets/docs/reference-docs/data-reports/virus/>.
Calculate and optimize dynamic performance ratings of association football teams competing in matches, in accordance with the method used in the research paper "Determining the level of ability of football teams by dynamic ratings based on the relative discrepancies in scores between adversaries", by Constantinou and Fenton (2013) <doi:10.1515/jqas-2012-0036> This dynamic rating system has proven to provide superior results for predicting association football outcomes.
This package provides tools for making, retrieving, displaying and solving sudoku games. This package is an alternative to the earlier sudoku-solver package, sudoku'. The present package uses a slightly different algorithm, has a simpler coding and presents a few more sugar tools, such as plot and print methods. Solved sudoku games are of some interest in Experimental Design as examples of Latin Square designs with additional balance constraints.
Computes sequential A-, MV-, D- and E-optimal or near-optimal block and row-column designs for two-colour cDNA microarray experiments using the linear fixed effects and mixed effects models where the interest is in a comparison of all possible elementary treatment contrasts. The package also provides an optional method of using the graphical user interface (GUI) R package tcltk to ensure that it is user friendly.
When using the R package exams to write mathematics questions in Sweave files, the output of a lot of R functions need to be adjusted for display in mathematical formulas. Specifically, the functions were accumulated when writing questions for the topics of the mathematics courses College Algebra, Precalculus, Calculus, Differential Equations, Introduction to Probability, and Linear Algebra. The output of the developed functions can be used in Sweave files.
This package provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and ruleset based on dataframe.
This package performs Principal Components Analysis (also known as PCA) dimensionality reduction in the context of a linear regression. In most cases, PCA dimensionality reduction is performed independent of the response variable for a regression. This captures the majority of the variance of the model's predictors, but may not actually be the optimal dimensionality reduction solution for a regression against the response variable. An alternative method, optimized for a regression against the response variable, is to use both PCA and a relative importance measure. This package applies PCA to a given data frame of predictors, and then calculates the relative importance of each PCA factor against the response variable. It outputs ordered factors that are optimized for model fit. By performing dimensionality reduction with this method, an individual can achieve a the same r-squared value as performing just PCA, but with fewer PCA factors. References: Yuri Balasanov (2017) <https://ilykei.com>.
This Ruby library provides an implementation of the Matrix and Vector classes. The Matrix class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties (trace, rank, inverse, determinant, eigensystem, etc.). The Vector class represents a mathematical vector, which is useful in its own right, and also constitutes a row or column of a Matrix.
rga is a line-oriented search tool for searching in both text and binary formats. It is a wrapper for ripgrep with adapters for common binary formats, enabling it to search in multitude of file types: pdf, docx, sqlite, jpg, movie subtitles (mkv, mp4), etc.
This package also supports adding custom adapters in its configuration file, matching for mime types or extensions and executing arbitrary executables for the parsing.
Texinfo is the official documentation format of the GNU project. It uses a single source file using explicit commands to produce a final document in any of several supported output formats, such as HTML or PDF. This package includes both the tools necessary to produce Info documents from their source and the command-line Info reader. The emphasis of the language is on expressing the content semantically, avoiding physical markup commands.
hoodscanR is an user-friendly R package providing functions to assist cellular neighborhood analysis of any spatial transcriptomics data with single-cell resolution. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. The package can result in cell-level neighborhood annotation output, along with funtions to perform neighborhood colocalization analysis and neighborhood-based cell clustering.
The software uses the copy number segments from a text file and identifies all chromosome arms that are globally altered and computes various genome-wide scores. The following HRD scores (characteristic of BRCA-mutated cancers) are included: LST, HR-LOH, nLST and gLOH. the package is tailored for the ThermoFisher Oncoscan assay analyzed with their Chromosome Alteration Suite (ChAS) but can be adapted to any input.
This package contains tools to fit the additive hazards model to data from a cohort, random sampling, two-phase Bernoulli sampling and two-phase finite population sampling, as well as calibration tool to incorporate phase I auxiliary information into the two-phase data model fitting. This package provides regression parameter estimates and their model-based and robust standard errors. It also offers tools to make prediction of individual specific hazards.
The main objective of the package is to enter a word of at least two letters based on which an Iterated Function System with Probabilities is constructed, and a two-dimensional fractal containing the chosen word infinitely often is generated via the Chaos Game. Additionally, the package allows to project the two-dimensional fractal on several three-dimensional surfaces and to transform the fractal into another fractal with uniform marginals.
Loads and creates spatial data, including layers and tools that are relevant to the activities of the Commission for the Conservation of Antarctic Marine Living Resources. Provides two categories of functions: load functions and create functions. Load functions are used to import existing spatial layers from the online CCAMLR GIS such as the ASD boundaries. Create functions are used to create layers from user data such as polygons and grids.
Implementing a multiple imputation algorithm for multivariate data with missing and censored values under a coarsening at random assumption (Heitjan and Rubin, 1991<doi:10.1214/aos/1176348396>). The multiple imputation algorithm is based on the data augmentation algorithm proposed by Tanner and Wong (1987)<doi:10.1080/01621459.1987.10478458>. The Gibbs sampling algorithm is adopted to to update the model parameters and draw imputations of the coarse data.
Simulating data and fitting multi-species N-mixture models using nimble'. Includes features for handling zero-inflation and temporal correlation, Bayesian inference, model diagnostics, parameter estimation, and predictive checks. Designed for ecological studies with zero-altered or time-series data. Mimnagh, N., Parnell, A., Prado, E., & Moral, R. A. (2022) <doi:10.1007/s10651-022-00542-7>. Royle, J. A. (2004) <doi:10.1111/j.0006-341X.2004.00142.x>.
The detection of worrying approximate collinearity in a multiple linear regression model is a problem addressed in all existing statistical packages. However, we have detected deficits regarding to the incorrect treatment of qualitative independent variables and the role of the intercept of the model. The objective of this package is to correct these deficits. In this package will be available detection and treatment techniques traditionally used as the recently developed.