Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival Data with toxicokinetics toxicodynamics (TKTD) models. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS). See models description in Jager et al. (2011) <doi:10.1021/es103092a> and implementation using Bayesian inference in Baudrot and Charles (2019) <doi:10.1038/s41598-019-47698-0>.
The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin, 2021 <doi:10.3389/fevo.2021.588292>) can be used for a variety of multivariate problems when count data are at play, including principal component analysis for count data, discriminant analysis, model-based clustering and network inference. Implements variational algorithms to fit such models accompanied with a set of functions for visualization and diagnostic.
Tests one hypothesis with several test statistics, correcting for multiple testing. The central function in the package is testtwice(). In a sensitivity analysis, the method has the largest design sensitivity of its component tests. The package implements the method and examples in Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. Biometrika, 99(4), 763-774.
Attaches a set of packages commonly used for spatial plotting with tmap'. It includes tmap and its extensions ('tmap.glyphs', tmap.networks', tmap.cartogram', tmap.mapgl'), as well as supporting spatial data packages ('sf', stars', terra') and cols4all for exploring color palettes. The collection is designed for thematic mapping workflows and does not include the full set of packages from the R-spatial ecosystem.
Construct a Canonical Variate Analysis Biplot via the Generalised Singular Value Decomposition, for cases when the number of samples is less than the number of variables. For more information on biplots, see Gower JC, Lubbe SG, Le Roux NJ (2011) <doi:10.1002/9780470973196> and for more information on the generalised singular value decomposition, see Edelman A, Wang Y (2020) <doi:10.1137/18M1234412>.
MethylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from Reduced representation bisulfite sequencing (RRBS) and its variants, but also target-capture methods and whole genome bisulfite sequencing. It also has functions to analyze base-pair resolution 5hmC data from experimental protocols such as oxBS-Seq and TAB-Seq.
Manage the life cycle of your exported functions with shared conventions, documentation badges, and non-invasive deprecation warnings. The lifecycle package defines four development stages (experimental, maturing, stable, and questioning) and three deprecation stages (soft-deprecated, deprecated, and defunct). It makes it easy to insert badges corresponding to these stages in your documentation. Usage of deprecated functions are signalled with increasing levels of non-invasive verbosity.
This package provides procedures for model-based trees for subgroup analyses in clinical trials and model-based forests for the estimation and prediction of personalised treatment effects. Currently partitioning of linear models, lm(), generalised linear models, glm(), and Weibull models, survreg(), are supported. Advanced plotting functionality is supported for the trees and a test for parameter heterogeneity is provided for the personalised models.
This package provides extensive functionality for comparing results obtained by different methods for differential expression analysis of RNAseq data. It also contains functions for simulating count data. Finally, it provides convenient interfaces to several packages for performing the differential expression analysis. These can also be used as templates for setting up and running a user-defined differential analysis workflow within the framework of the package.
This R package makes use of the exhaustive RESTful Web service API that has been implemented for the Cellabase database. It enable researchers to query and obtain a wealth of biological information from a single database saving a lot of time. Another benefit is that researchers can easily make queries about different biological topics and link all this information together as all information is integrated.
This package provides a simple driver that reads binary data created by the ASD Inc. portable spectrometer instruments, such as the FieldSpec (for more information, see <http://www.asdi.com/products/fieldspec-spectroradiometers>). Spectral data can be extracted from the ASD files as raw (DN), white reference, radiance, or reflectance. Additionally, the metadata information contained in the ASD file header can also be accessed.
ACE (Advanced Cohort Engine) is a powerful tool that allows constructing cohorts of patients extremely quickly and efficiently. This package is designed to interface directly with an instance of ACE search engine and facilitates API queries and data dumps. Prerequisite is a good knowledge of the temporal language to be able to efficiently construct a query. More information available at <https://shahlab.stanford.edu/start>.
Create an addin in Rstudio to do fill-in-the-middle (FIM) and chat with latest Mistral AI models for coding, Codestral and Codestral Mamba'. For more details about Mistral AI API': <https://docs.mistral.ai/getting-started/quickstart/> and <https://docs.mistral.ai/api/>. For more details about Codestral model: <https://mistral.ai/news/codestral>; about Codestral Mamba': <https://mistral.ai/news/codestral-mamba>.
This package provides a lightweight data validation and testing toolkit for R. Its guiding philosophy is that adding code-based data checks to users existing workflow should be both quick and intuitive. The suite of functions included therefore mirror the common data checks many users already perform by hand or by eye. Additionally, the checkthat package is optimized to work within tidyverse data manipulation pipelines.
The goal of dataspice is to make it easier for researchers to create basic, lightweight, and concise metadata files for their datasets. These basic files can then be used to make useful information available during analysis, create a helpful dataset "README" webpage, and produce more complex metadata formats to aid dataset discovery. Metadata fields are based on the Schema.org and Ecological Metadata Language standards.
This package provides step-by-step automation for integrating biodiversity data from multiple online aggregators, merging and cleaning datasets while addressing challenges such as taxonomic inconsistencies, georeferencing issues, and spatial or environmental outliers. Includes functions to extract environmental data and to define the biogeographic ranges in which species are most likely to occur. For methodological details see the associated publication.<doi: 10.1002/ecog.08203>.
This package creates participant flow diagrams directly from a dataframe. Representing the flow of participants through each stage of a study, especially in clinical trials, is essential to assess the generalisability and validity of the results. This package provides a set of functions that can be combined with a pipe operator to create all kinds of flowcharts from a data frame in an easy way.
Recursive partitioning based on (generalized) linear mixed models (GLMMs) combining lmer()/glmer() from lme4 and lmtree()/glmtree() from partykit'. The fitting algorithm is described in more detail in Fokkema, Smits, Zeileis, Hothorn & Kelderman (2018; <DOI:10.3758/s13428-017-0971-x>). For detecting and modeling subgroups in growth curves with GLMM trees see Fokkema & Zeileis (2024; <DOI:10.3758/s13428-024-02389-1>).
Cluster sampling is a valuable approach when constructing a comprehensive list of individual units is challenging. It provides operational and cost advantages. This package is designed to test the efficiency of cluster sampling in terms cluster variance and design effect in context to crop surveys. This package has been developed using the algorithm of Iqbal et al. (2018) <doi:10.19080/BBOAJ.2018.05.555673>.
Lake temperature records, metadata, and climate drivers for 291 global lakes during the time period 1985-2009. Temperature observations were collected using satellite and in situ methods. Climatic drivers and geomorphometric characteristics were also compiled and are included for each lake. Data are part of the associated publication from the Global Lake Temperature Collaboration project (http://www.laketemperature.org). See citation('laketemps') for dataset attribution.
This package provides functions to calculate Unique Trait Combinations (UTC) and scaled Unique Trait Combinations (sUTC) as measures of multivariate richness. The package can also calculate beta-diversity for trait richness and can partition this into nestedness-related and turnover components. The code will also calculate several measures of overlap. See Keyel and Wiegand (2016) <doi:10.1111/2041-210X.12558> for more details.
This package provides a graphical user interface tool to estimate ploidy from DNA cells stained with fluorescent dyes and analyzed by flow cytometry, following the methodology of Gómez-Muñoz and Fischer (2024) <doi:10.1101/2024.01.24.577056>. Features include multiple file uploading and configuration, peak fluorescence intensity detection, histogram visualizations, peak error curation, ploidy and genome size calculations, and easy results export.
Characterization of a mid-summer drought (MSD) with precipitation based statistics. The MSD is a phenomenon of decreased rainfall during a typical rainy season. It is a feature of rainfall in much of Central America and is also found in other locations, typically those with a Mediterranean climate. Details on the metrics are in Maurer et al. (2022) <doi:10.5194/hess-26-1425-2022>.
Some enhancements, extensions and additions to the facilities of the recommended MASS package that are useful mainly for teaching purposes, with more convenient default settings and user interfaces. Key functions from MASS are imported and re-exported to avoid masking conflicts. In addition we provide some additional functions mainly used to illustrate coding paradigms and techniques, such as Gramm-Schmidt orthogonalisation and generalised eigenvalue problems.