Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Data from multi environment agronomic trials, which are often carried out by plant breeders, can be analyzed with the tools offered by this package such as the Additive Main effects and Multiplicative Interaction model or AMMI ('Gauch 1992, ISBN:9780444892409) and the Site Regression model or SREG ('Cornelius 1996, <doi:10.1201/9780367802226>). Since these methods present a poor performance under the presence of outliers and missing values, this package includes robust versions of the AMMI model ('Rodrigues 2016, <doi:10.1093/bioinformatics/btv533>), and also imputation techniques specifically developed for this kind of data ('Arciniegas-Alarcón 2014, <doi:10.2478/bile-2014-0006>).
William S. Cleveland's book Visualizing Data is a classic piece of literature on Exploratory Data Analysis. Although it was written several decades ago, its content is still relevant as it proposes several tools which are useful to discover patterns and relationships among the data under study, and also to assess the goodness of fit o a model. This package provides functions to produce the ggplot2 versions of the visualization tools described in this book and is thought to be used in the context of courses on Exploratory Data Analysis.
Data sets from the book Generalized Linear Models with Examples in R by Dunn and Smyth.
The algorithm of semi-supervised learning is based on finite Gaussian mixture models and includes a mechanism for handling missing data. It aims to fit a g-class Gaussian mixture model using maximum likelihood. The algorithm treats the labels of unclassified features as missing data, building on the framework introduced by Rubin (1976) <doi:10.2307/2335739> for missing data analysis. By taking into account the dependencies in the missing pattern, the algorithm provides more information for determining the optimal classifier, as specified by Bayes rule.
Generalizes application of gray-level co-occurrence matrix (GLCM) metrics to objects outside of images. The current focus is to apply GLCM metrics to the study of biological networks and fitness landscapes that are used in studying evolutionary medicine and biology, particularly the evolution of cancer resistance. The package was developed as part of the author's publication in Physics in Medicine and Biology Barker-Clarke et al. (2023) <doi:10.1088/1361-6560/ace305>. A general reference to learn more about mathematical oncology can be found at Rockne et al. (2019) <doi:10.1088/1478-3975/ab1a09>.
This package contains the framework of the estimation, sampling, and hypotheses testing for two special distributions (Exponentiated Exponential-Pareto and Exponentiated Inverse Gamma-Pareto) within the family of Generalized Exponentiated Composite distributions. The detailed explanation and the applications of these two distributions were introduced in Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.1080/03610926.2022.2050399>, Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/math10111895>, and Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/app13010645>.
This package provides tools to run genome-wide association study (GWAS) and genome-wide by environment interaction study (GWEIS) scans using the genetic data stored in a binary dosage file. The user provides a data frame with the subject's covariate data and the information about the binary dosage file returned by the BinaryDosage::getbdinfo() routine.
Create plots that combine a phylogeny and frequency dynamics. Phylogenetic input can be a generic adjacency matrix or a tree of class "phylo". Inspired by similar plots in publications of the labs of RE Lenski and JE Barrick. Named for HJ Muller (who popularised such plots) and H Wickham (whose code this package exploits).
Extends the capabilities of ggplot2 by providing grammatical elements and plot helpers designed for visualizing temporal patterns. The package implements a grammar of temporal graphics, which leverages calendar structures to highlight changes over time. The package also provides plot helper functions to quickly produce commonly used time series graphics, including time plots, season plots, and seasonal sub-series plots.
Using an approach based on similarity graph to estimate change-point(s) and the corresponding p-values. Can be applied to any type of data (high-dimensional, non-Euclidean, etc.) as long as a reasonable similarity measure is available.
This package provides algorithms for detection of spatial patterns from oceanographic data using image processing methods based on Gradient Recognition.
Fits generalized linear models where the parameters are subject to linear constraints. The model is specified by giving a symbolic description of the linear predictor, a description of the error distribution, and a matrix of constraints on the parameters.
This package implements methods to plot periodic data in any arbitrary range on the fly.
Efficient algorithms for fitting the regularization path of linear regression, GLM, and Cox regression models with grouped penalties. This includes group selection methods such as group lasso, group MCP, and group SCAD as well as bi-level selection methods such as the group exponential lasso, the composite MCP, and the group bridge. For more information, see Breheny and Huang (2009) <doi:10.4310/sii.2009.v2.n3.a10>, Huang, Breheny, and Ma (2012) <doi:10.1214/12-sts392>, Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>, and Breheny (2015) <doi:10.1111/biom.12300>, or visit the package homepage <https://pbreheny.github.io/grpreg/>.
Derivative Free Gradient Projection Algorithms for Factor Rotation. For more details see ?GPArotateDF. Theory for these functions can be found in the following publications: Jennrich (2004) <doi:10.1007/BF02295647>. Bernaards and Jennrich (2005) <doi:10.1177/0013164404272507>.
Simulation, estimation and testing for geopolitical volatility (GEOVOL) based on the global common volatility model of Engle and Campos-Martins (2023) <doi:10.1016/j.jfineco.2022.09.009>. GEOVOL is modelled as a latent multiplicative volatility factor with heterogeneous factor loadings. Estimation is carried out as a maximization-maximization procedure, where GEOVOL and the GEOVOL loadings are estimated iteratively until convergence.
This package provides a Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>.
Comparing two independent or paired groups across a range of descriptive statistics, enabling the evaluation of potential differences in central tendency (mean, median), dispersion (variance, interquartile range), shape (skewness, kurtosis), and distributional characteristics (various quantiles). The analytical framework incorporates parametric t-tests, non-parametric Wilcoxon tests, permutation tests, and bootstrap resampling techniques to assess the statistical significance of observed differences.
Estimates a counterfactual using Gaussian process projection. It takes a dataframe, creates missingness in the desired outcome variable and estimates counterfactual values based on all information in the dataframe. The package writes Stan code, checks it for convergence and adds artificial noise to prevent overfitting and returns a plot of actual values and estimated counterfactual values using r-base plot.
Create Primavera-style interactive Gantt charts with Work Breakdown Structure (WBS) hierarchy and activities. Features include color-coded WBS items, indented labels, scrollable views for large projects, dynamic date formatting, and the ability to dim past activities. Built on top of plotly for interactive visualizations.
Reproduce the halfnorm() function found in the faraway package using the ggplot2 API.
Fit Generalized Linear Models to continuous and count outcomes, as well as estimate the prevalence of misrepresentation of an important binary predictor. Misrepresentation typically arises when there is an incentive for the binary factor to be misclassified in one direction (e.g., in insurance settings where policy holders may purposely deny a risk status in order to lower the insurance premium). This is accomplished by treating a subset of the response variable as resulting from a mixture distribution. Model parameters are estimated via the Expectation Maximization algorithm and standard errors of the estimates are obtained from closed forms of the Observed Fisher Information. For an introduction to the models and the misrepresentation framework, see Xia et. al., (2023) <https://variancejournal.org/article/73151-maximum-likelihood-approaches-to-misrepresentation-models-in-glm-ratemaking-model-comparisons>.
Builds a LASSO, Ridge, or Elastic Net model with glmnet or cv.glmnet with bootstrap inference statistics (SE, CI, and p-value) for selected coefficients with no shrinkage applied for them. Model performance can be evaluated on test data and an automated alpha selection is implemented for Elastic Net. Parallelized computation is used to speed up the process. The methods are described in Friedman et al. (2010) <doi:10.18637/jss.v033.i01> and Simon et al. (2011) <doi:10.18637/jss.v039.i05>.
Specification, analysis, simulation, and fitting of generalised linear mixed models. Includes Markov Chain Monte Carlo Maximum likelihood and Laplace approximation model fitting for a range of models, non-linear fixed effect specifications, a wide range of flexible covariance functions that can be combined arbitrarily, robust and bias-corrected standard error estimation, power calculation, data simulation, and more. See <https://samuel-watson.github.io/glmmr-web/> for a detailed manual.