The classical and extended occupancy distributions occur in cases where balls are randomly allocated to bins. The PDF, CDF, quantile functions, generation of random variates, and calculating the first four central moments of the distributions are implemented as described in Oâ Neill (2019) <doi:10.1080/00031305.2019.1699445>.
This package provides tools for downloading, reading and analyzing the Continuous National Household Sample Survey - PNADC, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website <https://www.ibge.gov.br/>. Further analysis must be made using package survey'.
This package provides functions for the construction of Petri Nets. Petri Nets can be replayed by firing enabled transitions. Silent transitions will be hidden by the execution handler. Also includes functionalities for the visualization of Petri Nets and export of Petri Nets to PNML (Petri Net Markup Language) files.
Full text, in data frames containing one row per verse, of the Standard Works of The Church of Jesus Christ of Latter-day Saints (LDS). These are the Old Testament, (KJV), the New Testament (KJV), the Book of Mormon, the Doctrine and Covenants, and the Pearl of Great Price.
This package provides a rendering tool for parameterized SQL that also translates into different SQL dialects. These dialects include Microsoft SQL Server', Oracle', PostgreSql
', Amazon RedShift
', Apache Impala', IBM Netezza', Google BigQuery
', Microsoft PDW', Snowflake', Azure Synapse Analytics Dedicated', Apache Spark', SQLite', and InterSystems
IRIS'.
Test and estimates of location, tests of independence, tests of sphericity and several estimates of shape all based on spatial signs, symmetrized signs, ranks and signed ranks. For details, see Oja and Randles (2004) <doi:10.1214/088342304000000558> and Oja (2010) <doi:10.1007/978-1-4419-0468-3>.
This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.
An implementation of the American Society for Testing and Materials (ASTM) Standard E691 for interlaboratory testing procedures, designed for cross-platform genomic measurements. Given three (3) or more genomic platforms or laboratory protocols, this package provides interlaboratory testing procedures giving per-locus comparisons for sensitivity and precision between platforms.
In this package, a Hidden Semi Markov Model (HSMM) and one homogeneous segmentation model are designed and implemented for segmentation genomic data, with the aim of assisting in transcripts detection using high throughput technology like RNA-seq or tiling array, and copy number analysis using aCGH or sequencing.
This package provides tools to create pretty tables for HTML documents and other formats. Functions are provided to let users create tables, modify and format their content. It extends the officer
package and can be used within R markdown documents when rendering to HTML and to Word documents.
This package contains a number of common astronomy conversion routines, particularly the HMS and degrees schemes, which can be fiddly to convert between on mass due to the textural nature of the former. It allows users to coordinate match datasets quickly. It also contains functions for various cosmological calculations.
This package provides plotting functions for posterior analysis, model checking, and MCMC diagnostics. The package is designed not only to provide convenient functionality for users, but also a common set of functions that can be easily used by developers working on a variety of R packages for Bayesian modeling.
spacetime
provides classes and methods for spatio-temporal data, including space-time regular lattices, sparse lattices, irregular data, and trajectories; utility functions for plotting data as map sequences (lattice or animation) or multiple time series; methods for spatial and temporal matching or aggregation, retrieving coordinates, print, summary, etc.
This Python module enables remote procedure calls, clustering, and distributed-computing. For this purpose, it makes use of object-proxying, a technique that employs python's dynamic nature, to overcome the physical boundaries between processes and computers, so that remote objects can be manipulated as if they were local.
Constraint optimization, or constraint programming, is the name given to identifying feasible solutions out of a very large set of candidates, where the problem can be modeled in terms of arbitrary constraints. MiniZinc
is a free and open-source constraint modeling language. Constraint satisfaction and discrete optimization problems can be formulated in a high-level modeling language. Models are compiled into an intermediate representation that is understood by a wide range of solvers. MiniZinc
itself provides several solvers, for instance GeCode
'. R users can use the package to solve constraint programming problems without using MiniZinc
directly, modify existing MiniZinc
models and also create their own models.
The analysis of different aspects of biodiversity requires specific algorithms. For example, in regionalisation analyses, the high frequency of ties and zero values in dissimilarity matrices produced by Beta-diversity turnover produces hierarchical cluster dendrograms whose topology and bootstrap supports are affected by the order of rows in the original matrix. Moreover, visualisation of biogeographical regionalisation can be facilitated by a combination of hierarchical clustering and multi-dimensional scaling. The recluster package provides robust techniques to visualise and analyse pattern of biodiversity and to improve occurrence data for cryptic taxa. Other functions related to recluster (e.g. the biodecrypt family) are currently available in GitHub
at <https://github.com/leondap/recluster>.
This package provides tools for large, sparse optimal matching of treated units and control units in observational studies. Provisions are made for refined covariate balance constraints, which include fine and near-fine balance as special cases. Matches are optimal in the sense that they are computed as solutions to network optimization problems rather than greedy algorithms. See Pimentel, et al.(2015) <doi:10.1080/01621459.2014.997879> and Pimentel (2016), Obs. Studies 2(1):4-23. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from Github at <https://github.com/josherrickson/rrelaxiv/>.
This package performs Rasch analysis (semi-)automatically, which has been shown to be comparable with the standard Rasch analysis (Feri Wijayanto et al. (2021) <doi:10.1111/bmsp.12218>, Feri Wijayanto et al. (2022) <doi:10.3758/s13428-022-01947-9>, Feri Wijayanto et al. (2022) <doi:10.1177/01466216221125178>).
This package provides functions for performing the Bayesian bootstrap as introduced by Rubin (1981) <doi:10.1214/aos/1176345338> and for summarizing the result. The implementation can handle both summary statistics that works on a weighted version of the data and summary statistics that works on a resampled data set.
This package performs parametric mediation analysis using the Bayesian g-formula approach for binary and continuous outcomes. The methodology is based on Comment (2018) <doi:10.5281/zenodo.1285275> and a demonstration of its application can be found at Yimer et al. (2022) <doi:10.48550/arXiv.2210.08499>
.
To perform model estimation using MCMC algorithms with Bayesian methods for incomplete longitudinal studies on binary and ordinal outcomes that are measured repeatedly on subjects over time with drop-outs. Details about the method can be found in the vignette or <https://sites.google.com/view/kuojunglee/r-packages/bayesrgmm>.
This package creates auto-grading check-fields and check-boxes for rmarkdown or quarto HTML. It can be used in class, when teacher share materials and tasks, so students can solve some problems and check their work. In contrast to the learnr package, the checkdown package works serverlessly without shiny'.
This package provides tools for downloading, reading and analyzing the COVID19 National Household Sample Survey - PNAD COVID19, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website <https://www.ibge.gov.br/>. Further analysis must be made using package survey'.
This package provides functions to perform matching algorithms for causal inference with clustered data, as described in B. Arpino and M. Cannas (2016) <doi:10.1002/sim.6880>. Pure within-cluster and preferential within-cluster matching are implemented. Both algorithms provide causal estimates with cluster-adjusted estimates of standard errors.