Quality control and formatting tools developed for the Copernicus Data Rescue Service. The package includes functions to handle the Station Exchange Format (SEF), various statistical tests for climate data at daily and sub-daily resolution, as well as functions to plot the data. For more information and documentation see <https://datarescue.climate.copernicus.eu/st_data-quality-control>.
Generates Hadamard matrices using different construction methods. For those who want to generate Hadamard matrix, a generic function, Hadamard_matrix()
is provided. For those who want to generate Hadamard matrix using a particular method, separate functions are available. See Horadam (2007, ISBN:9780691119212) Hadamard Matrices and their applications, Princeton University Press for more information on Hadamard Matrices.
This package implements an estimation method for Hawkes processes when count data are only observed in discrete time, using a spectral approach derived from the Bartlett spectrum, see Cheysson and Lang (2020) <arXiv:2003.04314>
. Some general use functions for Hawkes processes are also included: simulation of (in)homogeneous Hawkes process, maximum likelihood estimation, residual analysis, etc.
Includes support for Mapbox Navigation APIs, including directions, isochrones, and route optimization; the Search API for forward and reverse geocoding; the Maps API for interacting with Mapbox vector tilesets and visualizing Mapbox maps in R; and Mapbox Tiling Service and tippecanoe for generating map tiles. See <https://docs.mapbox.com/api/> for more information about the Mapbox APIs.
This package provides a lightweight package designed to facilitate statistical simulations through functional programming. It centralizes the simulation process into a single higher-order function, enhancing manageability and usability without adding overhead from external dependencies. The package includes ready-to-use functions for common simulation targets. A detailed example can be found on <https://github.com/ielbadisy/mcstatsim>.
Dataset and functions from the meta-analysis published in Medicine & Science in Sports & Exercise. It contains all the data and functions to reproduce the analysis. "Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis". Felipe Mattioni Maturana, Peter Martus, Stephan Zipfel, Andreas M NieĆ (2020) <doi:10.1249/MSS.0000000000002506>.
This package provides a set of commands to manage an abstract optimization method. The goal is to provide a building block for a large class of specialized optimization methods. This package manages: the number of variables, the minimum and maximum bounds, the number of non linear inequality constraints, the cost function, the logging system, various termination criteria, etc...
This package implements novel tools for estimating sample sizes needed for phylogenetic studies, including studies focused on estimating the probability of true pathogen transmission between two cases given phylogenetic linkage and studies focused on tracking pathogen variants at a population level. Methods described in Wohl, Giles, and Lessler (2021) and in Wohl, Lee, DiPrete
, and Lessler (2023).
This package provides functions for converting among CIE XYZ, xyY
, Lab, and Luv. Calculate Correlated Color Temperature (CCT) and the Planckian and daylight loci. The XYZs of some standard illuminants and some standard linear chromatic adaptation transforms (CATs) are included. Three standard color difference metrics are included, plus the forward direction of the CIECAM02 color appearance model.
Fast computation of the required sample size or the achieved power, for GWAS studies with different types of covariate effects and different types of covariate-gene dependency structure. For the detailed description of the methodology, see Zhang (2022) "Power and Sample Size Computation for Genetic Association Studies of Binary Traits: Accounting for Covariate Effects" <arXiv:2203.15641>
.
This package provides a facility to generate sliced (orthogonal) Latin hypercube designs with four and five slices. For details about sliced and orthogonal Latin hypercube designs, see Yang, J. F., Lin, C. D., Qian, P. Z., and Lin, D. K. (2013). "Construction of sliced orthogonal Latin hypercube designs". Statistica Sinica, 1117-1130, <doi:10.5705/ss.2012.037>.
Bindings for the Tabula <https://tabula.technology/> Java library, which can extract tables from PDF files. This tool can reduce time and effort in data extraction processes in fields like investigative journalism. It allows for automatic and manual table extraction, the latter facilitated through a Shiny interface, enabling manual areas selection\ with a computer mouse for data retrieval.
Create highly customized tables with this simple and dependency-free package. Data frames can be converted to HTML', LaTeX
', Markdown', Word', PNG', PDF', or Typst tables. The user interface is minimalist and easy to learn. The syntax is concise. HTML tables can be customized using the flexible Bootstrap framework, and LaTeX
code with the tabularray package.
This package provides a set of wrappers intended to check, read and download information from the Wikimedia sources. It is specifically created to work with names of celebrities, in which case their information and statistics can be downloaded. Additionally, it also builds links and snippets to use in combination with the function gallery()
in netCoin
package.
This package is a parser to import HiC
data into R. It accepts several type of data: tabular files, Cooler `.cool` or `.mcool` files, Juicer `.hic` files or HiC-Pro
`.matrix` and `.bed` files. The HiC
data can be several files, for several replicates and conditions. The data is formated in an InteractionSet
object.
MethylSig
is a package for testing for differentially methylated cytosines (DMCs) or regions (DMRs) in whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing (RRBS) experiments. MethylSig
uses a beta binomial model to test for significant differences between groups of samples. Several options exist for either site-specific or sliding window tests, and variance estimation.
This package contains data required to run examples in prebs package. The data files include: 1) Small sample bam files for demonstration purposes 2) Probe sequence mappings for Custom CDF (taken from http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
) 3) Probe sequence mappings for manufacturer's CDF (manually created using bowtie).
This package implements several functions useful for analysis of gene expression data by sequencing tags as done in SAGE (Serial Analysis of Gene Expressen) data, i.e. extraction of a SAGE library from sequence files, sequence error correction, library comparison. Sequencing error correction is implementing using an Expectation Maximization Algorithm based on a Mixture Model of tag counts.
The main function kcca
implements a general framework for k-centroids cluster analysis supporting arbitrary distance measures and centroid computation. Further cluster methods include hard competitive learning, neural gas, and QT clustering. There are numerous visualization methods for cluster results (neighborhood graphs, convex cluster hulls, barcharts of centroids, ...), and bootstrap methods for the analysis of cluster stability.
Byebug is a Ruby 2 debugger implemented using the Ruby 2 TracePoint C API for execution control and the Debug Inspector C API for call stack navigation. The core component provides support that front-ends can build on. It provides breakpoint handling and bindings for stack frames among other things and it comes with a command line interface.
The main purpose of this package is to propose a transparent methodological framework to compare bioregionalisation methods based on hierarchical and non-hierarchical clustering algorithms (Kreft & Jetz (2010) <doi:10.1111/j.1365-2699.2010.02375.x>) and network algorithms (Lenormand et al. (2019) <doi:10.1002/ece3.4718> and Leroy et al. (2019) <doi:10.1111/jbi.13674>).
Given $p$-dimensional training data containing $d$ groups (the design space), a classification algorithm (classifier) predicts which group new data belongs to. Generally the input to these algorithms is high dimensional, and the boundaries between groups will be high dimensional and perhaps curvilinear or multi-faceted. This package implements methods for understanding the division of space between the groups.
This package performs simple correspondence analysis on a two-way contingency table, or multiple correspondence analysis (homogeneity analysis) on data with p categorical variables, and produces bootstrap-based elliptical confidence regions around the projected coordinates for the category points. Includes routines to plot the results in a variety of styles. Also reports the standard numerical output for correspondence analysis.
Given the non-negative data and its distribution, the package estimates the rank parameter for Non-negative Matrix Factorization. The method is based on hypothesis testing, using a deconvolved bootstrap distribution to assess the significance level accurately despite the large amount of optimization error. The distribution of the non-negative data can be either Normal distributed or Poisson distributed.