Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for studying genotype-phenotype maps for bi-allelic loci underlying quantitative phenotypes. The 0.1 version is released in connection with the publication of Gjuvsland et al (2013) and implements basic line plots and the monotonicity measures for GP maps presented in the paper. Reference: Gjuvsland AB, Wang Y, Plahte E and Omholt SW (2013) Monotonicity is a key feature of genotype-phenotype maps. Frontier in Genetics 4:216 <doi:10.3389/fgene.2013.00216>.
Generates experiments - simulating structured or experimental data as: completely randomized design, randomized block design, latin square design, factorial and split-plot experiments (Ferreira, 2008, ISBN:8587692526; Naes et al., 2007 <doi:10.1002/qre.841>; Rencher et al., 2007, ISBN:9780471754985; Montgomery, 2001, ISBN:0471316490).
R function gawdis() produces multi-trait dissimilarity with more uniform contributions of different traits. de Bello et al. (2021) <doi:10.1111/2041-210X.13537> presented the approach based on minimizing the differences in the correlation between the dissimilarity of each trait, or groups of traits, and the multi-trait dissimilarity. This is done using either an analytic or a numerical solution, both available in the function.
Individual-based simulations forward in time, simulating how patterns in ancestry along the genome change after admixture. Full description can be found in Janzen (2021) <doi:10.1111/2041-210X.13612>.
This package provides a lightweight fork of gMCP with functions for graphical described multiple test procedures introduced in Bretz et al. (2009) <doi:10.1002/sim.3495> and Bretz et al. (2011) <doi:10.1002/bimj.201000239>. Implements a flexible function using ggplot2 to create multiplicity graph visualizations. Contains instructions of multiplicity graph and graphical testing for group sequential design, described in Maurer and Bretz (2013) <doi:10.1080/19466315.2013.807748>, with necessary unit testing using testthat'.
Unconstrained and constrained maximum likelihood estimation of structural and reduced form Gaussian mixture vector autoregressive, Student's t mixture vector autoregressive, and Gaussian and Student's t mixture vector autoregressive models, quantile residual tests, graphical diagnostics, simulations, forecasting, and estimation of generalized impulse response function and generalized forecast error variance decomposition. Leena Kalliovirta, Mika Meitz, Pentti Saikkonen (2016) <doi:10.1016/j.jeconom.2016.02.012>, Savi Virolainen (2025) <doi:10.1080/07350015.2024.2322090>, Savi Virolainen (in press) <doi:10.1016/j.ecosta.2025.09.003>.
This package provides a simple to use, intuitive, and extensible interface to several stochastic simulation algorithms for generating simulated trajectories of finite population continuous-time model. Currently it implements Gillespie's exact stochastic simulation algorithm (Direct method) and several approximate methods (Explicit tau-leap, Binomial tau-leap, and Optimized tau-leap). The package also contains a library of template models that can be run as demo models and can easily be customized and extended. Currently the following models are included, Decaying-Dimerization reaction set, linear chain system, logistic growth model, Lotka predator-prey model, Rosenzweig-MacArthur predator-prey model, Kermack-McKendrick SIR model, and a metapopulation SIRS model. Pineda-Krch et al. (2008) <doi:10.18637/jss.v025.i12>.
Computes the gravitational and magnetic anomalies generated by 3-D vertical rectangular prisms at specific observation points using the method of Plouff (1976) <doi:10.1190/1.1440645>.
Interfaces GAMS data (*.gdx) files with data.table's using the GAMS R package gdxrrw'. The gdxrrw package is available on the GAMS wiki: <https://support.gams.com/doku.php?id=gdxrrw:interfacing_gams_and_r>.
This package provides a variety of functions to analyze and model geostatistical count data with Gaussian copulas, including 1) data simulation and visualization; 2) correlation structure assessment (here also known as the Normal To Anything); 3) calculate multivariate normal rectangle probabilities; 4) likelihood inference and parallel prediction at predictive locations. Description of the method is available from: Han and DeOliveira (2018) <doi:10.18637/jss.v087.i13>.
Uses simple Bayesian conjugate prior update rules to calculate the win probability of each option, value remaining in the test, and percent lift over the baseline for various marketing objectives. References: Fink, Daniel (1997) "A Compendium of Conjugate Priors" <https://www.johndcook.com/CompendiumOfConjugatePriors.pdf>. Stucchio, Chris (2015) "Bayesian A/B Testing at VWO" <https://vwo.com/downloads/VWO_SmartStats_technical_whitepaper.pdf>.
This package provides functions for performing polygon geometry with grid grobs. This allows complex shapes to be defined by combining simpler shapes.
Quickly and easily perform exploratory data analysis by uploading your data as a csv file. Start generating insights using ggplot2 plots and table1 tables with descriptive stats, all using an easy-to-use point and click Shiny interface.
Create a grid-based graphviz using the following functions: 1 - Creating the data.frame where the nodes are; 2 - Adding and editing nodes; 3 - Plotting these nodes.
This package provides algorithms for detection of spatial patterns from oceanographic data using image processing methods based on Gradient Recognition.
Kernel regularized least squares, also known as kernel ridge regression, is a flexible machine learning method. This package implements this method by providing a smooth term for use with mgcv and uses random sketching to facilitate scalable estimation on large datasets. It provides additional functions for calculating marginal effects after estimation and for use with ensembles ('SuperLearning'), double/debiased machine learning ('DoubleML'), and robust/clustered standard errors ('sandwich'). Chang and Goplerud (2024) <doi:10.1017/pan.2023.27> provide further details.
Local structure in genomic data often induces dependence between observations taken at different genomic locations. Ignoring this dependence leads to underestimation of the standard error of parameter estimates. This package uses block bootstrapping to estimate asymptotically correct standard errors of parameters from any standard generalised linear model that may be fit by the glm() function.
Saves a ggplot object into multiple files, each with a layer added incrementally. Generally to be used in presentation slides. Flexible enough to allow different file types for the final complete plot, and intermediate builds.
R provides fantastic tools for changepoint analysis, but plots generated by the tools do not have the ggplot2 style. This tool, however, combines changepoint', changepoint.np and ecp together, and uses ggplot2 to visualize changepoints.
Functionalities to compute model based genetic components i.e. genotypic variance, phenotypic variance and heritability for given traits of different genotypes from replicated data using methodology explained by Burton, G. W. & Devane, E. H. (1953) (<doi:10.2134/agronj1953.00021962004500100005x>) and Allard, R.W. (2010, ISBN:8126524154).
Density, distribution function, quantile function, and random generation for the generalized Beta and Beta prime distributions. The family of generalized Beta distributions is conjugate for the Bayesian binomial model, and the generalized Beta prime distribution is the posterior distribution of the relative risk in the Bayesian two Poisson samples model when a Gamma prior is assigned to the Poisson rate of the reference group and a Beta prime prior is assigned to the relative risk. References: Laurent (2012) <doi:10.1214/11-BJPS139>, Hamza & Vallois (2016) <doi:10.1016/j.spl.2016.03.014>, Chen & Novick (1984) <doi:10.3102/10769986009002163>.
This package provides the standard operations for signal processing on graphs: graph Fourier transform, spectral graph wavelet transform, visualization tools. It also implements a data driven method for graph signal denoising/regression, for details see De Loynes, Navarro, Olivier (2019) <arxiv:1906.01882>. The package also provides an interface to the SuiteSparse Matrix Collection, <https://sparse.tamu.edu/>, a large and widely used set of sparse matrix benchmarks collected from a wide range of applications.
Testing, Implementation and Forecasting of Grey Model (GM(1, 1)). For method details see Hsu, L. and Wang, C. (2007). <doi:10.1016/j.techfore.2006.02.005>.
Estimation of the cutpoint defined by the Generalized Symmetry point in a binary classification setting based on a continuous diagnostic test or marker. Two methods have been implemented to construct confidence intervals for this optimal cutpoint, one based on the Generalized Pivotal Quantity and the other based on Empirical Likelihood. Numerical and graphical outputs for these two methods are easily obtained.