Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides user tokens for ICES web services that require authentication and authorization. Web services covered by this package are ICES VMS database, the ICES DATSU web services, and the ICES SharePoint site <https://www.ices.dk/data/tools/Pages/WebServices.aspx>.
This package provides tools to analyze point patterns in space occurring over planar network structures derived from graph-related intensity measures for undirected, directed, and mixed networks. This package is based on the following research: Eckardt and Mateu (2018) <doi:10.1080/10618600.2017.1391695>. Eckardt and Mateu (2021) <doi:10.1007/s11749-020-00720-4>.
Expands iNEXT to include the estimation of sample completeness and evenness. The package provides simple functions to perform the following four-step biodiversity analysis: STEP 1: Assessment of sample completeness profiles. STEP 2a: Analysis of size-based rarefaction and extrapolation sampling curves to determine whether the asymptotic diversity can be accurately estimated. STEP 2b: Comparison of the observed and the estimated asymptotic diversity profiles. STEP 3: Analysis of non-asymptotic coverage-based rarefaction and extrapolation sampling curves. STEP 4: Assessment of evenness profiles. The analyses in STEPs 2a, 2b and STEP 3 are mainly based on the previous iNEXT package. Refer to the iNEXT package for details. This package is mainly focusing on the computation for STEPs 1 and 4. See Chao et al. (2020) <doi:10.1111/1440-1703.12102> for statistical background.
Multivariate Expectation-Maximization (EM) based imputation framework that offers several different algorithms. These include regularisation methods like Lasso and Ridge regression, tree-based models and dimensionality reduction methods like PCA and PLS.
Simulation of segments shared identical-by-descent (IBD) by pedigree members. Using sex specific recombination rates along the human genome (Halldorsson et al. (2019) <doi:10.1126/science.aau1043>), phased chromosomes are simulated for all pedigree members. Applications include calculation of realised relatedness coefficients and IBD segment distributions. ibdsim2 is part of the pedsuite collection of packages for pedigree analysis. A detailed presentation of the pedsuite', including a separate chapter on ibdsim2', is available in the book Pedigree analysis in R (Vigeland, 2021, ISBN:9780128244302). A Shiny app for visualising and comparing IBD distributions is available at <https://magnusdv.shinyapps.io/ibdsim2-shiny/>.
This package provides functions to access data from public RESTful APIs including Nager.Date', World Bank API', and REST Countries API', retrieving real-time or historical data related to Indonesia, such as holidays, economic indicators, and international demographic and geopolitical indicators. The package also includes a curated collection of open datasets focused on Indonesia, covering topics such as consumer prices, poverty probability, food prices by region, tourism destinations, and minimum wage statistics. The package supports reproducible research and teaching by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
Implementation of some Individual Based Models (IBMs, sensu Grimm and Railsback 2005) and methods to create new ones, particularly for population dynamics models (reproduction, mortality and movement). The basic operations for the simulations are implemented in Rcpp for speed.
Different functions includes constructing composite indicators, imputing missing data, and evaluating imputation techniques. Additionally, different tools for data normalization. Detailed methodologies of Indicator package are: OECD/European Union/EC-JRC (2008), "Handbook on Constructing Composite Indicators: Methodology and User Guide", OECD Publishing, Paris, <DOI:10.1787/533411815016>, Matteo Mazziotta & Adriano Pareto, (2018) "Measuring Well-Being Over Time: The Adjusted Mazziottaâ Pareto Index Versus Other Non-compensatory Indices" <DOI:10.1007/s11205-017-1577-5> and De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An Application to MDGs" <DOI:10.1007/s11205-010-9727-z>.
Import and export data from the most common statistical formats by using R functions that guarantee the least loss of the data information, giving special attention to the date variables and the labelled ones.
This package contains functions for evaluating & comparing the performance of Binary classification models. Functions can be called either statically or interactively (as Shiny Apps).
This package provides a statistical method based on Bayesian Additive Regression Trees with Global Standard Error Permutation Test (BART-G.SE) for descriptor selection and symbolic regression. It finds the symbolic formula of the regression function y=f(x) as described in Ye, Senftle, and Li (2023) <arXiv:2110.10195>.
This package provides a scaling method to obtain a standardized Moran's I measure. Moran's I is a measure for the spatial autocorrelation of a data set, it gives a measure of similarity between data and its surrounding. The range of this value must be [-1,1], but this does not happen in practice. This package scale the Moran's I value and map it into the theoretical range of [-1,1]. Once the Moran's I value is rescaled, it facilitates the comparison between projects, for instance, a researcher can calculate Moran's I in a city in China, with a sample size of n1 and area of interest a1. Another researcher runs a similar experiment in a city in Mexico with different sample size, n2, and an area of interest a2. Due to the differences between the conditions, it is not possible to compare Moran's I in a straightforward way. In this version of the package, the spatial autocorrelation Moran's I is calculated as proposed in Chen(2013) <arXiv:1606.03658>.
Various functions and a Shiny app to enrich the results of Multiple Correspondence Analysis with interpretive axes and planes (see Moschidis, Markos, and Thanopoulos, 2022; <doi:10.1108/ACI-07-2022-0191>).
This package provides a collection of several functions related to construction and analysis of incomplete split-plot designs. The package contains functions to obtain and analyze incomplete split-plot designs for three kinds of situations namely (i) when blocks are complete with respect to main plot treatments and main plots are incomplete with respect to subplot treatments, (ii) when blocks are incomplete with respect to main plot treatments and main plots are complete with respect to subplot treatments and (iii) when blocks are incomplete with respect to main plot treatments and main plots are incomplete with respect to subplot treatments.
This package provides a suite of functions to use with regression models, including summaries, residual plots, and factor comparisons. Used as part of the Model Fitting module of iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions.
Calculates event rates and compares means and variances of groups of interval data corrected for missed arrival observations.
Electricity is not made equal and it vary in its carbon footprint (or carbon intensity) depending on its source. This package enables to access and query data provided by the Carbon Intensity API (<https://carbonintensity.org.uk/>). National Gridâ s Carbon Intensity API provides an indicative trend of regional carbon intensity of the electricity system in Great Britain.
This package provides a tool to calculate and plot estimates from models in which an interaction between the main predictor and a continuous covariate has been specified. Methods used in the package refer to Harrell Jr FE (2015, ISBN:9783319330396); Durrleman S, Simon R. (1989) <doi:10.1002/sim.4780080504>; Greenland S. (1995) <doi:10.1097/00001648-199507000-00005>.
We provide data sets used in the textbook "Introduction to Sports Analytics using R" by Elmore and Urbaczweski (2025).
This package provides a library for generic interval manipulations using a new interval vector class. Capabilities include: locating various kinds of relationships between two interval vectors, merging overlaps within a single interval vector, splitting an interval vector on its overlapping endpoints, and applying set theoretical operations on interval vectors. Many of the operations in this package were inspired by James Allen's interval algebra, Allen (1983) <doi:10.1145/182.358434>.
Computes individual contributions to the overall Gini and Theil's T and Theil's L measures and their decompositions by groups such as race, gender, national origin, with the three functions of iGini(), iTheiT(), and iTheilL(). For details, see Tim F. Liao (2019) <doi:10.1177/0049124119875961>.
Single Layer Feed-forward Neural networks (SLFNs) have many applications in various fields of statistical modelling, especially for time-series forecasting. However, there are some major disadvantages of training such networks via the widely accepted gradient-based backpropagation algorithm, such as convergence to local minima, dependencies on learning rate and large training time. These concerns were addressed by Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, wherein they introduced the Extreme Learning Machine (ELM), an extremely fast learning algorithm for SLFNs which randomly chooses the weights connecting input and hidden nodes and analytically determines the output weights of SLFNs. It shows good generalized performance, but is still subject to a high degree of randomness. To mitigate this issue, this package uses a dimensionality reduction technique given in Hyvarinen (1999) <doi:10.1109/72.761722>, namely, the Independent Component Analysis (ICA) to determine the input-hidden connections and thus, remove any sort of randomness from the algorithm. This leads to a robust, fast and stable ELM model. Using functions within this package, the proposed model can also be compared with an existing alternative based on the Principal Component Analysis (PCA) algorithm given by Pearson (1901) <doi:10.1080/14786440109462720>, i.e., the PCA based ELM model given by Castano et al. (2013) <doi:10.1007/s11063-012-9253-x>, from which the implemented ICA based algorithm is greatly inspired.
The data analysis module for the Iterative Optimization Heuristics Profiler ('IOHprofiler'). This module provides statistical analysis methods for the benchmark data generated by optimization heuristics, which can be visualized through a web-based interface. The benchmark data is usually generated by the experimentation module, called IOHexperimenter'. IOHanalyzer also supports the widely used COCO (Comparing Continuous Optimisers) data format for benchmarking.
Confidence intervals for causal effects, using data collected in different experimental or environmental conditions. Hidden variables can be included in the model with a more experimental version.