Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generates Hadamard matrices using different construction methods. For those who want to generate Hadamard matrix, a generic function, Hadamard_matrix() is provided. For those who want to generate Hadamard matrix using a particular method, separate functions are available. See Horadam (2007, ISBN:9780691119212) Hadamard Matrices and their applications, Princeton University Press for more information on Hadamard Matrices.
This package provides utility functions for, and drawing on, the data.table package. The package also collates useful miscellaneous functions extending base R not available elsewhere. The name is a portmanteau of utils and the author.
Reporting heritability estimates is an important to quantitative genetics studies and breeding experiments. Here we provide functions to calculate various broad-sense heritabilities from asreml and lme4 model objects. All methods we have implemented in this package have extensively discussed in the article by Schmidt et al. (2019) <doi:10.1534/genetics.119.302134>.
Computes the hemodynamic response function (HRF) for task functional magnetic resonance imaging (fMRI) data. Also includes functions for constructing a design matrix from task fMRI event timings, and for comparing multiple design matrices in a general linear model (GLM). A wrapper function is provided for GLM analysis of CIFTI-format data. Lastly, there are supporting functions which provide visual summaries of the HRFs and design matrices.
Perform statistical writership analysis of scanned handwritten documents. Webpage provided at: <https://github.com/CSAFE-ISU/handwriter>.
This package provides a utility to quickly obtain clean and tidy men's basketball play by play data. Provides functions to access live play by play and box score data from ESPN<https://www.espn.com> with shot locations when available. It is also a full NBA Stats API<https://www.nba.com/stats/> wrapper. It is also a scraping and aggregating interface for Ken Pomeroy's men's college basketball statistics website<https://kenpom.com>. It provides users with an active subscription the capability to scrape the website tables and analyze the data for themselves.
Hierarchical and single-level non-negative matrix factorization. Several NMF algorithms are available.
This package provides a Shiny app allowing to convert HTML code to R code (e.g. <span>Hello</span> to tags$span("Hello")'), for usage in a Shiny UI.
H-index and h-alpha are a bibliometric indicators. This package provides functions to simulate how these indicators may develop over time for a given set of researchers and to visualize the simulation data. The implementation is based on the STATA ado h-index and is described in more detail in Bornmann et al. (2019) <arXiv:1905.11052>.
Returns a Hasse diagram of the layout structure (Bate and Chatfield (2016)) <doi:10.1080/00224065.2016.11918173> or the restricted layout structure (Bate and Chatfield (2016)) <doi:10.1080/00224065.2016.11918174> of an experimental design.
This package provides semiparametric sufficient dimension reduction for central mean subspaces for heterogeneous data defined by combinations of binary factors (such as chronic conditions). Subspaces are estimated to be hierarchically nested to respect the structure of subpopulations with overlapping characteristics. This package is an implementation of the proposed methodology of Huling and Yu (2021) <doi:10.1111/biom.13546>.
The model is high-dimensional vector autoregression with measurement error, also known as linear gaussian state-space model. Provable sparse expectation-maximization algorithm is provided for the estimation of transition matrix and noise variances. Global and simultaneous testings are implemented for transition matrix with false discovery rate control. For more information, see the accompanying paper: Lyu, X., Kang, J., & Li, L. (2023). "Statistical inference for high-dimensional vector autoregression with measurement error", Statistica Sinica.
This package implements an estimation method for Hawkes processes when count data are only observed in discrete time, using a spectral approach derived from the Bartlett spectrum, see Cheysson and Lang (2020) <arXiv:2003.04314>. Some general use functions for Hawkes processes are also included: simulation of (in)homogeneous Hawkes process, maximum likelihood estimation, residual analysis, etc.
Estimate parameters of the hysteretic threshold autoregressive (HysTAR) model, using conditional least squares. In addition, you can generate time series data from the HysTAR model. For details, see Li, Guan, Li and Yu (2015) <doi:10.1093/biomet/asv017>.
Multivariate conditional and marginal densities, moments, cumulative distribution functions as well as binary choice and sample selection models based on Hermite polynomial approximation which was proposed and described by A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>.
Enables chat completion and text annotation with local and OpenAI <https://openai.com/> language models, supporting batch processing, multiple annotators, and consistent output formats.
This package provides a stand-alone function that generates a user specified number of random datasets and computes eigenvalues using the random datasets (i.e., implements Horn's [1965, Psychometrika] parallel analysis <doi:10.1007/BF02289447>). Users then compare the resulting eigenvalues (the mean or the specified percentile) from the random datasets (i.e., eigenvalues resulting from noise) to the eigenvalues generated with the user's data. Can be used for both principal components analysis (PCA) and common/exploratory factor analysis (EFA). The output table shows how large eigenvalues can be as a result of merely using randomly generated datasets. If the user's own dataset has actual eigenvalues greater than the corresponding eigenvalues, that lends support to retain that factor/component. In other words, if the i(th) eigenvalue from the actual data was larger than the percentile of the (i)th eigenvalue generated using randomly generated data, empirical support is provided to retain that factor/component. Horn, J. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 32, 179-185.
Datasets and code examples that accompany our book Visser & Speekenbrink (2021), "Mixture and Hidden Markov Models with R", <https://depmix.github.io/hmmr/>.
This package provides a consistent API for hypothesis testing built on principles from Structure and Interpretation of Computer Programs': data abstraction, closure (combining tests yields tests), and higher-order functions (transforming tests). Implements z-tests, Wald tests, likelihood ratio tests, Fisher's method for combining p-values, and multiple testing corrections. Designed for use by other packages that want to wrap their hypothesis tests in a consistent interface.
The Gene Ontology (GO) Consortium <https://geneontology.org/> organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as GoMiner (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Microarray studies are usually analyzed with BP, whereas proteomics researchers often prefer CC. To capture the benefit of both of those ontologies, I developed a two-dimensional version of High-Throughput GoMiner ('HTGM2D'). I generate a 2D heat map whose axes are any two of BP, MF, or CC, and the value within a picture element of the heat map reflects the Jaccard metric p-value for the number of genes in common for the corresponding pair.
This package provides a modern idiomatic header-only C++ interface for libhdf5'. Original software can be found at <https://github.com/highfive-devs/highfive/>.
The heatex package calculates heat storage in the body and the components of heat exchange (conductive, convective, radiative, and evaporative) between the body and the environment during physical activity based on the principles of partitional calorimetry. The program enables heat exchange calculations for a range of environmental conditions when wearing various clothing ensembles.
Facilitates estimation of full univariate and bivariate probability density functions and cumulative distribution functions along with full quantile functions (univariate) and nonparametric correlation (bivariate) using Hermite series based estimators. These estimators are particularly useful in the sequential setting (both stationary and non-stationary) and one-pass batch estimation setting for large data sets. Based on: Stephanou, Michael, Varughese, Melvin and Macdonald, Iain. "Sequential quantiles via Hermite series density estimation." Electronic Journal of Statistics 11.1 (2017): 570-607 <doi:10.1214/17-EJS1245>, Stephanou, Michael and Varughese, Melvin. "On the properties of Hermite series based distribution function estimators." Metrika (2020) <doi:10.1007/s00184-020-00785-z> and Stephanou, Michael and Varughese, Melvin. "Sequential estimation of Spearman rank correlation using Hermite series estimators." Journal of Multivariate Analysis (2021) <doi:10.1016/j.jmva.2021.104783>.
Fits sparse interaction models for continuous and binary responses subject to the strong (or weak) hierarchy restriction that an interaction between two variables only be included if both (or at least one of) the variables is included as a main effect. For more details, see Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.