Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a user-friendly interface for the Hierarchical Data Format 5 ('HDF5') library designed to "just work." It bundles the necessary system libraries to ensure easy installation on all platforms. Features smart defaults that automatically map R objects (vectors, matrices, data frames) to efficient HDF5 types, removing the need to manage low-level details like dataspaces or property lists. Uses the HDF5 library developed by The HDF Group <https://www.hdfgroup.org/>.
User-friendly and fast set of functions for estimating parameters of hierarchical Bayesian species distribution models (Latimer and others 2006 <doi:10.1890/04-0609>). Such models allow interpreting the observations (occurrence and abundance of a species) as a result of several hierarchical processes including ecological processes (habitat suitability, spatial dependence and anthropogenic disturbance) and observation processes (species detectability). Hierarchical species distribution models are essential for accurately characterizing the environmental response of species, predicting their probability of occurrence, and assessing uncertainty in the model results.
We provide a stage-wise selection method using genetic algorithms, designed to efficiently identify main and two-way interactions within high-dimensional linear regression models. Additionally, it implements simulated annealing algorithm during the mutation process. The relevant paper can be found at: Ye, C.,and Yang,Y. (2019) <doi:10.1109/TIT.2019.2913417>.
This package provides a system for identifying diseases or events from healthcare databases and preparing data for epidemiological studies. It includes capabilities not supported by SQL', such as matching strings by stringr style regular expressions, and can compute comorbidity scores (Quan et al. (2005) <doi:10.1097/01.mlr.0000182534.19832.83>) directly on a database server. The implementation is based on dbplyr with full tidyverse compatibility.
This package provides a set of functions to estimate haziness of an image based on RGB bands. It returns a haze factor, varying from 0 to 1, a metric for fogginess and cloudiness. The package also presents additional functions to estimate brightness, darkness and contrast rasters of the RGB image. This package can be used for several applications such as inference of weather quality data and performing environmental studies from interpreting digital images.
This package provides functions for determining and evaluating high-risk zones and simulating and thinning point process data, as described in Determining high risk zones using point process methodology - Realization by building an R package Seibold (2012) <http://highriskzone.r-forge.r-project.org/Bachelorarbeit.pdf> and Determining high-risk zones for unexploded World War II bombs by using point process methodology', Mahling et al. (2013) <doi:10.1111/j.1467-9876.2012.01055.x>.
This package provides functions to conduct robust inference in difference-in-differences and event study designs by implementing the methods developed in Rambachan & Roth (2023) <doi:10.1093/restud/rdad018>, "A More Credible Approach to Parallel Trends" [Previously titled "An Honest Approach..."]. Inference is conducted under a weaker version of the parallel trends assumption. Uniformly valid confidence sets are constructed based upon conditional confidence sets, fixed-length confidence sets and hybridized confidence sets.
This package implements the simpler and faster heat index, which matches the values of the original 1979 heat index and its 2022 extension for air temperatures above 300 K (27 C, 80 F) and with only minor differences at lower temperatures. Also implements an algorithm for calculating the thermodynamic (and psychrometric) wet-bulb (and ice-bulb) temperature.
The hotspots package is designed to look within a set of measured values of a variable and identify values that are disproportionately high based on both the deviance of any given value from a statistical distribution and its similarity to other values. Because this relative magnitude of each value is taken into account, a value that is a statistical outlier may not always be a hot spot if other values are similarly large.
This package provides functions for processing, analysis and visualization of Hydrogen Deuterium eXchange monitored by Mass Spectrometry experiments (HDX-MS) (<doi:10.1093/bioinformatics/btaa587>). HaDeX introduces a new standardized and reproducible workflow for the analysis of the HDX-MS data, including novel uncertainty intervals. Additionally, it covers data exploration, quality control and generation of publication-quality figures. All functionalities are also available in the in-built Shiny app.
This data-only package was created for distributing data used in the examples of the hglm package.
Provide users with a framework to learn the intricacies of the Hamiltonian Monte Carlo algorithm with hands-on experience by tuning and fitting their own models. All of the code is written in R. Theoretical references are listed below:. Neal, Radford (2011) "Handbook of Markov Chain Monte Carlo" ISBN: 978-1420079418, Betancourt, Michael (2017) "A Conceptual Introduction to Hamiltonian Monte Carlo" <arXiv:1701.02434>, Thomas, S., Tu, W. (2020) "Learning Hamiltonian Monte Carlo in R" <arXiv:2006.16194>, Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013) "Bayesian Data Analysis" ISBN: 978-1439840955, Agresti, Alan (2015) "Foundations of Linear and Generalized Linear Models ISBN: 978-1118730034, Pinheiro, J., Bates, D. (2006) "Mixed-effects Models in S and S-Plus" ISBN: 978-1441903174.
Paternal recombination rate and maternal linkage disequilibrium (LD) are estimated for pairs of biallelic markers such as single nucleotide polymorphisms (SNPs) from progeny genotypes and sire haplotypes. The implementation relies on paternal half-sib families. If maternal half-sib families are used, the roles of sire/dam are swapped. Multiple families can be considered. For parameter estimation, at least one sire has to be double heterozygous at the investigated pairs of SNPs. Based on recombination rates, genetic distances between markers can be estimated. Markers with unusually large recombination rate to markers in close proximity (i.e. putatively misplaced markers) shall be discarded in this derivation. A workflow description is attached as vignette. *A pipeline is available at GitHub* <https://github.com/wittenburg/hsrecombi> Hampel, Teuscher, Gomez-Raya, Doschoris, Wittenburg (2018) "Estimation of recombination rate and maternal linkage disequilibrium in half-sibs" <doi:10.3389/fgene.2018.00186>. Gomez-Raya (2012) "Maximum likelihood estimation of linkage disequilibrium in half-sib families" <doi:10.1534/genetics.111.137521>.
An implementation of the sandwich smoother proposed in Fast Bivariate Penalized Splines by Xiao et al. (2012) <doi:10.1111/rssb.12007>. A hero is a specific type of sandwich. Dictionary.com (2018) <https://www.dictionary.com> describes a hero as: a large sandwich, usually consisting of a small loaf of bread or long roll cut in half lengthwise and containing a variety of ingredients, as meat, cheese, lettuce, and tomatoes. Also implements the spatio-temporal sandwich smoother of French and Kokoszka (2021) <doi:10.1016/j.spasta.2020.100413>.
The Hybrid design is a combination of model-assisted design (e.g., the modified Toxicity Probability Interval design) with dose-toxicity model-based design for phase I dose-finding studies. The hybrid design controls the overdosing toxicity well and leads to a recommended dose closer to the true maximum tolerated dose (MTD) due to its ability to calibrate for an intermediate dose. More details can be found in Liao et al. 2022 <doi:10.1002/ijc.34203>.
Maintenance has been discontinued for this package. It has been superseded by GeneralizedHyperbolic'. GeneralizedHyperbolic includes all the functionality of HyperbolicDist and more and is based on a more rational design. HyperbolicDist provides functions for the hyperbolic and related distributions. Density, distribution and quantile functions and random number generation are provided for the hyperbolic distribution, the generalized hyperbolic distribution, the generalized inverse Gaussian distribution and the skew-Laplace distribution. Additional functionality is provided for the hyperbolic distribution, including fitting of the hyperbolic to data.
This package provides functions and datasets to support Smilde, Marini, Westerhuis and Liland (2025, ISBN: 978-1-394-21121-0) "Analysis of Variance for High-Dimensional Data - Applications in Life, Food and Chemical Sciences". This implements and imports a collection of methods for HD-ANOVA data analysis with common interfaces, result- and plotting functions, multiple real data sets and four vignettes covering a range different applications.
This package provides tools for the estimation of Heckman selection models with robust variance-covariance matrices. It includes functions for computing the bread and meat matrices, as well as clustered standard errors for generalized Heckman models, see Fernando de Souza Bastos and Wagner Barreto-Souza and Marc G. Genton (2022, ISSN: <https://www.jstor.org/stable/27164235>). The package also offers cluster-robust inference with sandwich estimators, and tools for handling issues related to eigenvalues in covariance matrices.
This package provides a forecasting method that efficiently maps vast numbers of (scalar-valued) signals into an aggregate density forecast in a time-varying and computationally fast manner. The method proceeds in two steps: First, it transforms a predictive signal into a density forecast and, second, it combines the resulting candidate density forecasts into an ultimate aggregate density forecast. For a detailed explanation of the method, please refer to Adaemmer et al. (2025) <doi:10.1080/07350015.2025.2526424>.
This package provides a way to display word clouds in R. The word cloud is a html widget, so you can use it in interactive documents and shiny applications.
Fits latent space models for single networks and hierarchical latent space models for ensembles of networks as described in Sweet, Thomas & Junker (2013).
This tool identifies hydropeaking events from raw time-series flow record, a rapid flow variation induced by the hourly-adjusted electricity market. The novelty of HEDA is to use vector angle instead of the first-order derivative to detect change points which not only largely improves the computing efficiency but also accounts for the rate of change of the flow variation. More details <doi:10.1016/j.jhydrol.2021.126392>.
This package performs multiple hot-deck imputation of categorical and continuous variables in a data frame.
Hospital time series data analysis workflow tools, modeling, and automations. This library provides many useful tools to review common administrative time series hospital data. Some of these include average length of stay, and readmission rates. The aim is to provide a simple and consistent verb framework that takes the guesswork out of everything.