Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interface to the HERE REST APIs <https://developer.here.com/develop/rest-apis>: (1) geocode and autosuggest addresses or reverse geocode POIs using the Geocoder API; (2) route directions, travel distance or time matrices and isolines using the Routing', Matrix Routing and Isoline Routing APIs; (3) request real-time traffic flow and incident information from the Traffic API; (4) find request public transport connections and nearby stations from the Public Transit API; (5) request intermodal routes using the Intermodal Routing API; (6) get weather forecasts, reports on current weather conditions, astronomical information and alerts at a specific location from the Destination Weather API. Locations, routes and isolines are returned as sf objects.
This package contains miscellaneous functions useful for managing NetCDF files (see <https://en.wikipedia.org/wiki/NetCDF>), get moon phase and time for sun rise and fall, tide level, analyse and reconstruct periodic time series of temperature with irregular sinusoidal pattern, show scales and wind rose in plot with change of color of text, Metropolis-Hastings algorithm for Bayesian MCMC analysis, plot graphs or boxplot with error bars, search files in disk by there names or their content, read the contents of all files from a folder at one time.
An algorithm for flexible conditional density estimation based on application of pooled hazard regression to an artificial repeated measures dataset constructed by discretizing the support of the outcome variable. To facilitate flexible estimation of the conditional density, the highly adaptive lasso, a non-parametric regression function shown to estimate cadlag (RCLL) functions at a suitably fast convergence rate, is used. The use of pooled hazards regression for conditional density estimation as implemented here was first described for by DÃ az and van der Laan (2011) <doi:10.2202/1557-4679.1356>. Building on the conditional density estimation utilities, non-parametric inverse probability weighted (IPW) estimators of the causal effects of additive modified treatment policies are implemented, using conditional density estimation to estimate the generalized propensity score. Non-parametric IPW estimators based on this can be coupled with undersmoothing of the generalized propensity score estimator to attain the semi-parametric efficiency bound (per Hejazi, DÃ az, and van der Laan <doi:10.48550/arXiv.2205.05777>).
Facilitates building topology preserving maps for data analysis.
Supplement for the book "Handbook of Regression Methods" by D. S. Young. Some datasets used in the book are included and documented. Wrapper functions are included that simplify the examples in the textbook, such as code for constructing a regressogram and expanding ANOVA tables to reflect the total sum of squares.
Initializes a class that obtains API credentials and provides a method to use those credentials to make GET requests to the Hakai API server. Usage instructions are documented at <https://hakaiinstitute.github.io/hakai-api/>.
Allows to estimate and test high-dimensional mediation effects based on advanced mediator screening and penalized regression techniques. Methods used in the package refer to Zhang H, Zheng Y, Hou L, Liu L, HIMA: An R Package for High-Dimensional Mediation Analysis. Journal of Data Science. (2025). <doi:10.6339/25-JDS1192>.
An interactive Shiny dashboard for visualizing and exploring key metrics related to HIV/AIDS, including prevalence, incidence, mortality, and treatment coverage. The dashboard is designed to work with a dataset containing specific columns with standardized names. These columns must be present in the input data for the app to function properly: year: Numeric year of the data (e.g. 2010, 2021); sex: Gender classification (e.g. Male, Female); age_group: Age bracket (e.g. 15â 24, 25â 34); hiv_prevalence: Estimated HIV prevalence percentage; hiv_incidence: Number of new HIV cases per year; aids_deaths: Total AIDS-related deaths; plhiv: Estimated number of people living with HIV; art_coverage: Percentage receiving antiretroviral therapy (ART); testing_coverage: HIV testing services coverage; causes: Description of likely HIV transmission cause (e.g. unprotected sex, drug use). The dataset structure must strictly follow this column naming convention for the dashboard to render correctly.
This package provides tools for processing and analyzing .har and .sl4 files, making it easier for GEMPACK users and GTAP researchers to handle large economic datasets. It simplifies the management of multiple experiment results, enabling faster and more efficient comparisons without complexity. Users can extract, restructure, and merge data seamlessly, ensuring compatibility across different tools. The processed data can be exported and used in R', Stata', Python', Julia', or any software that supports Text, CSV, or Excel formats.
An R API wrapper for the Hystreet project <https://hystreet.com>. Hystreet provides pedestrian counts in different cities in Germany.
This package contains ten datasets used in the chapters and exercises of Paul, Alice (2023) "Health Data Science in R" <https://alicepaul.github.io/health-data-science-using-r/>.
The heterogeneous multi-task feature learning is a data integration method to conduct joint feature selection across multiple related data sets with different distributions. The algorithm can combine different types of learning tasks, including linear regression, Huber regression, adaptive Huber, and logistic regression. The modified version of Bayesian Information Criterion (BIC) is produced to measure the model performance. Package is based on Yuan Zhong, Wei Xu, and Xin Gao (2022) <https://www.fields.utoronto.ca/talk-media/1/53/65/slides.pdf>.
Given a database of previous treatment/placebo estimates, their standard errors and sample sizes, the program calculates a significance criteria and power estimate that takes into account the among trial variation.
Builds and optimizes Hopfield artificial neural networks (Hopfield, 1982, <doi:10.1073/pnas.79.8.2554>). One-layer and three-layer models are implemented. The energy of the Hopfield network is minimized with formula from Krotov and Hopfield (2016, <doi:10.48550/ARXIV.1606.01164>). Optimization (supervised learning) is done through a gradient-based method. Classification is done with S3 methods predict(). Parallelization with OpenMP is used if available during compilation.
This package provides a set of functions to estimate haziness of an image based on RGB bands. It returns a haze factor, varying from 0 to 1, a metric for fogginess and cloudiness. The package also presents additional functions to estimate brightness, darkness and contrast rasters of the RGB image. This package can be used for several applications such as inference of weather quality data and performing environmental studies from interpreting digital images.
Plot an R package's recursive dependency graph and tabulate the number of unique downstream dependencies added by top-level dependencies. This helps R package developers identify which of their declared dependencies add the most downstream dependencies in order to prioritize them for removal if needed. Uses graph stress minimization adapted from Schoch (2023) <doi:10.21105/joss.05238> and originally reported in Gansner et al. (2004) <doi:10.1007/978-3-540-31843-9_25>.
An S4 implementation of Eq. (3) and Eq. (7) by David J. Hand and Robert J. Till (2001) <DOI:10.1023/A:1010920819831>.
We provide extensions to the classical dataset "Example 4: Death by the kick of a horse in the Prussian Army" first used by Ladislaus von Bortkeiwicz in his treatise on the Poisson distribution "Das Gesetz der kleinen Zahlen", <DOI:10.1017/S0370164600019453>. As well as an extended time series for the horse-kick death data, we also provide, in parallel, deaths by falling from a horse and by drowning.
The "Hit and Run" Markov Chain Monte Carlo method for sampling uniformly from convex shapes defined by linear constraints, and the "Shake and Bake" method for sampling from the boundary of such shapes. Includes specialized functions for sampling normalized weights with arbitrary linear constraints. Tervonen, T., van Valkenhoef, G., Basturk, N., and Postmus, D. (2012) <doi:10.1016/j.ejor.2012.08.026>. van Valkenhoef, G., Tervonen, T., and Postmus, D. (2014) <doi:10.1016/j.ejor.2014.06.036>.
This package provides data for functions typically used in the healthyR package.
Several procedures for the hierarchical kernel extreme value process of Reich and Shaby (2012) <DOI:10.1214/12-AOAS591>, including simulation, estimation and spatial extrapolation. The spatial latent variable model <DOI:10.1214/11-STS376> is also included.
Enhance package testthat by allowing tests to be attached to the function/object they test. This allows to keep functional and unit test code together.
This package provides tools to generate synthetic electronic health records including patients, encounters, vitals, labs, medications, procedures, and allergies, with optional COVID-19-focused and computed tomography (CT)-research views, and export them to comma separated values ('CSV'), SQLite', and Excel formats for researchers and developers.
This package provides access to datasets published by Hlà daÄ státu <https://www.hlidacstatu.cz/>, a Czech watchdog, via their API.