Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
State-of-the-art Multi-Objective Particle Swarm Optimiser (MOPSO), based on the algorithm developed by Lin et al. (2018) <doi:10.1109/TEVC.2016.2631279> with improvements described by Marinao-Rivas & Zambrano-Bigiarini (2020) <doi:10.1109/LA-CCI48322.2021.9769844>. This package is inspired by and closely follows the philosophy of the single objective hydroPSO R package ((Zambrano-Bigiarini & Rojas, 2013) <doi:10.1016/j.envsoft.2013.01.004>), and can be used for global optimisation of non-smooth and non-linear R functions and R-base models (e.g., TUWmodel', GR4J', GR6J'). However, the main focus of hydroMOPSO is optimising environmental and other real-world models that need to be run from the system console (e.g., SWAT+'). hydroMOPSO communicates with the model to be optimised through its input and output files, without requiring modifying its source code. Thanks to its flexible design and the availability of several fine-tuning options, hydroMOPSO can tackle a wide range of multi-objective optimisation problems (e.g., multi-objective functions, multiple model variables, multiple periods). Finally, hydroMOPSO is designed to run on multi-core machines or network clusters, to alleviate the computational burden of complex models with long execution time.
It is used to travel graphs, by using DFS and BFS to get the path from node to each leaf node. Depth first traversal(DFS) is a recursive algorithm for searching all the vertices of a graph or tree data structure. Traversal means visiting all the nodes of a graph. Breadth first traversal(BFS) algorithm is used to search a tree or graph data structure for a node that meets a set of criteria. It starts at the treeâ s root or graph and searches/visits all nodes at the current depth level before moving on to the nodes at the next depth level. Also, it provides the matrix which is reachable between each node. Implement reference about Baruch Awerbuch (1985) <doi:10.1016/0020-0190(85)90083-3>.
Interact with the application programming interface for the web annotation service Hypothes.is (See <http://hypothes.is> for more information.) Allows users to download data about public annotations, and create, retrieve, update, and delete their own annotations.
This package provides a collection of functions for sampling and simulating 3D surfaces and objects and estimating metrics like rugosity, fractal dimension, convexity, sphericity, circularity, second moments of area and volume, and more.
This package provides functions to assess and test for heterogeneity in the utility of a surrogate marker with respect to a baseline covariate using censored (survival data), and to test for heterogeneity across multiple time points. More details are available in Parast et al (2024) <doi:10.1002/sim.10122>.
This package provides a set of tools to create georeferenced hillshade relief raster maps using ray-tracing and other advanced hill-shading techniques. It includes a wrapper function to create a georeferenced, ray-traced hillshade map from a digital elevation model, and other functions that can be used in a rayshader pipeline.
Harmony is a tool using AI which allows you to compare items from questionnaires and identify similar content. You can try Harmony at <https://harmonydata.ac.uk/app/> and you can read our blog at <https://harmonydata.ac.uk/blog/> or at <https://fastdatascience.com/how-does-harmony-work/>. Documentation at <https://harmonydata.ac.uk/harmony-r-released/>.
The half-weight index gregariousness (HWIG) is an association index used in social network analyses. It extends the half-weight association index (HWI), correcting for level of gregariousness in individuals. It is calculated using group by individual data according to methods described in Godde et al. (2013) <doi:10.1016/j.anbehav.2012.12.010>.
This package contains one function for drawing Piper diagrams (also called Piper-Hill diagrams) of water analyses for major ions.
Allows users to create high-quality heatmaps from labelled, hierarchical data. Specifically, for data with a two-level hierarchical structure, it will produce a heatmap where each row and column represents a category at the lower level. These rows and columns are then grouped by the higher-level group each category belongs to, with the names for each category and groups shown in the margins. While other packages (e.g. dendextend') allow heatmap rows and columns to be arranged by groups only, hhmR also allows the labelling of the data at both the category and group level.
Add, share and manage annotations for Shiny applications and R Markdown documents via hypothes.is'.
This package provides access to Uber's H3 library for geospatial indexing via its JavaScript transpile h3-js <https://github.com/uber/h3-js> and V8 <https://github.com/jeroen/v8>.
This package provides a multi-core R package that allows for the statistical modeling of multi-group multivariate mixed data using Gaussian graphical models. Combining the Gaussian copula framework with the fused graphical lasso penalty, the heteromixgm package can handle a wide variety of datasets found in various sciences. The package also includes an option to perform model selection using the AIC, BIC and EBIC information criteria, a function that plots partial correlation graphs based on the selected precision matrices, as well as simulate mixed heterogeneous data for exploratory or simulation purposes and one multi-group multivariate mixed agricultural dataset pertaining to maize yields. The package implements the methodological developments found in Hermes et al. (2024) <doi:10.1080/10618600.2023.2289545>.
This package provides a collection of reweighted marginal hypothesis tests for clustered data, based on reweighting methods of Williamson, J., Datta, S., and Satten, G. (2003) <doi:10.1111/1541-0420.00005>. The tests in this collection are clustered analogs to well-known hypothesis tests in the classical setting, and are appropriate for data with cluster- and/or group-size informativeness. The syntax and output of functions are modeled after common, recognizable functions native to R. Methods used in the package refer to Gregg, M., Datta, S., and Lorenz, D. (2020) <doi:10.1177/0962280220928572>, Nevalainen, J., Oja, H., and Datta, S. (2017) <doi:10.1002/sim.7288> Dutta, S. and Datta, S. (2015) <doi:10.1111/biom.12447>, Lorenz, D., Datta, S., and Harkema, S. (2011) <doi:10.1002/sim.4368>, Datta, S. and Satten, G. (2008) <doi:10.1111/j.1541-0420.2007.00923.x>, Datta, S. and Satten, G. (2005) <doi:10.1198/016214504000001583>.
An interactive Shiny dashboard for visualizing and exploring key metrics related to HIV/AIDS, including prevalence, incidence, mortality, and treatment coverage. The dashboard is designed to work with a dataset containing specific columns with standardized names. These columns must be present in the input data for the app to function properly: year: Numeric year of the data (e.g. 2010, 2021); sex: Gender classification (e.g. Male, Female); age_group: Age bracket (e.g. 15â 24, 25â 34); hiv_prevalence: Estimated HIV prevalence percentage; hiv_incidence: Number of new HIV cases per year; aids_deaths: Total AIDS-related deaths; plhiv: Estimated number of people living with HIV; art_coverage: Percentage receiving antiretroviral therapy (ART); testing_coverage: HIV testing services coverage; causes: Description of likely HIV transmission cause (e.g. unprotected sex, drug use). The dataset structure must strictly follow this column naming convention for the dashboard to render correctly.
This package provides a protocol that facilitates the processing and analysis of Hydrogen-Deuterium Exchange Mass Spectrometry data using p-value statistics and Critical Interval analysis. It provides a pipeline for analyzing data from HDXExaminer (Sierra Analytics, Trajan Scientific), automating matching and comparison of protein states through Welch's T-test and the Critical Interval statistical framework. Additionally, it simplifies data export, generates PyMol scripts, and ensures calculations meet publication standards. HDXBoxeR assists in various aspects of hydrogen-deuterium exchange data analysis, including reprocessing data, calculating parameters, identifying significant peptides, generating plots, and facilitating comparison between protein states. For details check papers by Hageman and Weis (2019) <doi:10.1021/acs.analchem.9b01325> and Masson et al. (2019) <doi:10.1038/s41592-019-0459-y>. HDXBoxeR citation: Janowska et al. (2024) <doi:10.1093/bioinformatics/btae479>.
Can be used for paternity and maternity assignment and outperforms conventional methods where closely related individuals occur in the pool of possible parents. The method compares the genotypes of offspring with any combination of potentials parents and scores the number of mismatches of these individuals at bi-allelic genetic markers (e.g. Single Nucleotide Polymorphisms). It elaborates on a prior exclusion method based on the Homozygous Opposite Test (HOT; Huisman 2017 <doi:10.1111/1755-0998.12665>) by introducing the additional exclusion criterion HIPHOP (Homozygous Identical Parents, Heterozygous Offspring are Precluded; Cockburn et al., in revision). Potential parents are excluded if they have more mismatches than can be expected due to genotyping error and mutation, and thereby one can identify the true genetic parents and detect situations where one (or both) of the true parents is not sampled. Package hiphop can deal with (a) the case where there is contextual information about parentage of the mother (i.e. a female has been seen to be involved in reproductive tasks such as nest building), but paternity is unknown (e.g. due to promiscuity), (b) where both parents need to be assigned, because there is no contextual information on which female laid eggs and which male fertilized them (e.g. polygynandrous mating system where multiple females and males deposit young in a common nest, or organisms with external fertilisation that breed in aggregations). For details: Cockburn, A., Penalba, J.V.,Jaccoud, D.,Kilian, A., Brouwer, L., Double, M.C., Margraf, N., Osmond, H.L., van de Pol, M. and Kruuk, L.E.B. (in revision). HIPHOP: improved paternity assignment among close relatives using a simple exclusion method for bi-allelic markers. Molecular Ecology Resources, DOI to be added upon acceptance.
Several procedures for the hierarchical kernel extreme value process of Reich and Shaby (2012) <DOI:10.1214/12-AOAS591>, including simulation, estimation and spatial extrapolation. The spatial latent variable model <DOI:10.1214/11-STS376> is also included.
Some methods to manipulate HDF5 files, extending the hdf5r package. Reading and writing R objects to HDF5 formats follow the specification of AnnData <https://anndata.readthedocs.io/en/latest/fileformat-prose.html>.
Using the MDL principle, it is possible to estimate parameters for a histogram-like model. The package contains the implementation of such an estimation method.
This package provides methods to test whether time series is consistent with white noise. Two new tests based on Haar wavelets and general wavelets described by Nason and Savchev (2014) <doi:10.1002/sta4.69> are provided and, for comparison purposes this package also implements the B test of Bartlett (1967) <doi:10.2307/2333850>. Functionality is provided to compute an approximation to the theoretical power of the general wavelet test in the case of general ARMA alternatives.
Datasets related to Hong Kong, including information on the 2019 elected District Councillors (<https://www.districtcouncils.gov.hk> and <https://dce2019.hk01.com/>) and traffic collision data from the Hong Kong Department of Transport (<https://www.td.gov.hk/>). All of the data in this package is available in the public domain.
Allows to detect spatial clusters of abnormal values on multivariate or functional data (Frévent et al. (2022) <doi:10.32614/RJ-2022-045>). See also: Frévent et al. (2023) <doi:10.1093/jrsssc/qlad017>, Smida et al. (2022) <doi:10.1016/j.csda.2021.107378>, Frévent et al. (2021) <doi:10.1016/j.spasta.2021.100550>. Cucala et al. (2019) <doi:10.1016/j.spasta.2018.10.002>, Cucala et al. (2017) <doi:10.1016/j.spasta.2017.06.001>, Jung and Cho (2015) <doi:10.1186/s12942-015-0024-6>, Kulldorff et al. (2009) <doi:10.1186/1476-072X-8-58>.
Homomorphic computations in R for privacy-preserving applications. Currently only the Paillier Scheme is implemented.