An implementation of methods for designing, evaluating, and comparing primer sets for multiplex PCR. Primers are designed by solving a set cover problem such that the number of covered template sequences is maximized with the smallest possible set of primers. To guarantee that high-quality primers are generated, only primers fulfilling constraints on their physicochemical properties are selected. A Shiny app providing a user interface for the functionalities of this package is provided by the openPrimeRui package.
ParMETIS is an MPI-based parallel library that implements a variety of algorithms for partitioning unstructured graphs, meshes, and for computing fill-reducing orderings of sparse matrices. ParMETIS extends the functionality provided by METIS and includes routines that are especially suited for parallel AMR computations and large scale numerical simulations. The algorithms implemented in ParMETIS are based on the parallel multilevel k-way graph-partitioning, adaptive repartitioning, and parallel multi-constrained partitioning schemes developed in our lab.
This package implements the hybrid framework for event prediction described in Fang & Zheng (2011, <doi:10.1016/j.cct.2011.05.013>). To estimate the survival function the event prediction is based on, a piecewise exponential hazard function is fit to the time-to-event data to infer the potential change points. Prior to the last identified change point, the survival function is estimated using Kaplan-Meier, and the tail after the change point is fit using piecewise exponential.
Multimodal mediation analysis is an emerging problem in microbiome data analysis. Multimedia make advanced mediation analysis techniques easy to use, ensuring that all statistical components are transparent and adaptable to specific problem contexts. The package provides a uniform interface to direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap confidence interval construction, and sensitivity analysis. More details are available in Jiang et al. (2024) "multimedia: Multimodal Mediation Analysis of Microbiome Data" <doi:10.1101/2024.03.27.587024>.
This package provides a basic interface for accessing annotation data from the Multi-CAST collection, a database of spoken natural language texts edited by Geoffrey Haig and Stefan Schnell. The collection draws from a diverse set of languages and has been annotated across multiple levels. Annotation data is downloaded on request from the servers of the University of Bamberg. See the Multi-CAST website <https://multicast.aspra.uni-bamberg.de/> for more information and a list of related publications.
Estimates micro effects on macro structures (MEMS) and average micro mediated effects (AMME). URL: <https://github.com/sduxbury/netmediate>. BugReports: <https://github.com/sduxbury/netmediate/issues>. Robins, Garry, Phillipa Pattison, and Jodie Woolcock (2005) <doi:10.1086/427322>. Snijders, Tom A. B., and Christian E. G. Steglich (2015) <doi:10.1177/0049124113494573>. Imai, Kosuke, Luke Keele, and Dustin Tingley (2010) <doi:10.1037/a0020761>. Duxbury, Scott (2023) <doi:10.1177/00811750231209040>. Duxbury, Scott (2024) <doi:10.1177/00811750231220950>.
With given inputs that include number of points, discrete design space, a measure of skewness, models and parameter value, this package calculates the objective value, optimal designs and plot the equivalence theory under A- and D-optimal criteria under the second-order Least squares estimator. This package is based on the paper "Properties of optimal regression designs under the second-order least squares estimator" by Chi-Kuang Yeh and Julie Zhou (2021) <doi:10.1007/s00362-018-01076-6>.
Privacy protected raster maps can be created from spatial point data. Protection methods include smoothing of dichotomous variables by de Jonge and de Wolf (2016) <doi:10.1007/978-3-319-45381-1_9>, continuous variables by de Wolf and de Jonge (2018) <doi:10.1007/978-3-319-99771-1_23>, suppressing revealing values and a generalization of the quad tree method by Suñé, Rovira, Ibáñez and Farré (2017) <doi:10.2901/EUROSTAT.C2017.001>.
Fast, lightweight toolkit for data splitting. Data sets can be partitioned into disjoint groups (e.g. into training, validation, and test) or into (repeated) k-folds for subsequent cross-validation. Besides basic splits, the package supports stratified, grouped as well as blocked splitting. Furthermore, cross-validation folds for time series data can be created. See e.g. Hastie et al. (2001) <doi:10.1007/978-0-387-84858-7> for the basic background on data partitioning and cross-validation.
This package provides functions for fitting, forecasting, and early detection of outbreaks in sparse surveillance count time series. Supports negative binomial (NB), self-exciting NB, generalise autoregressive moving average (GARMA) NB , zero-inflated NB (ZINB), self-exciting ZINB, generalise autoregressive moving average ZINB, and hurdle formulations. Climatic and environmental covariates can be included in the regression component and/or the zero-modified components. Includes outbreak-detection algorithms for NB, ZINB, and hurdle models, with utilities for prediction and diagnostics.
The function generates and plots random snowflakes. Each snowflake is defined by a given diameter, width of the crystal, color, and random seed. Snowflakes are plotted in such way that they always remain round, no matter what the aspect ratio of the plot is. Snowflakes can be created using transparent colors, which creates a more interesting, somewhat realistic, image. Images of the snowflakes can be separately saved as svg files and used in websites as static or animated images.
The h5Seurat file format is specifically designed for the storage and analysis of multi-modal single-cell and spatially-resolved expression experiments, for example, from CITE-seq or 10X Visium technologies. It holds all molecular information and associated metadata, including (for example) nearest-neighbor graphs, dimensional reduction information, spatial coordinates and image data, and cluster labels. This package also supports rapid and on-disk conversion between h5Seurat and AnnData objects, with the goal of enhancing interoperability between Seurat and Scanpy.
This package provides a multi-task learning approach to variable selection regression with highly correlated predictors and sparse effects, based on frequentist statistical inference. It provides statistical evidence to identify which subsets of predictors have non-zero effects on which subsets of response variables, motivated and designed for colocalization analysis across genome-wide association studies (GWAS) and quantitative trait loci (QTL) studies. The ColocBoost model is described in Cao et. al. (2025) <doi:10.1101/2025.04.17.25326042>.
Useful tools for conveniently downloading FHIR resources in xml format and converting them to R data.frames. The package uses FHIR-search to download bundles from a FHIR server, provides functions to save and read xml-files containing such bundles and allows flattening the bundles to data.frames using XPath expressions. FHIR® is the registered trademark of HL7 and is used with the permission of HL7. Use of the FHIR trademark does not constitute endorsement of this product by HL7.
It provides an interesting solution for handling a high number of segmentation variables in partial least squares structural equation modeling. The package implements the "Pathmox" algorithm (Lamberti, Sanchez, and Aluja,(2016)<doi:10.1002/asmb.2168>) including the F-coefficient test (Lamberti, Sanchez, and Aluja,(2017)<doi:10.1002/asmb.2270>) to detect the path coefficients responsible for the identified differences). The package also allows running the hybrid multi-group approach (Lamberti (2021) <doi:10.1007/s11135-021-01096-9>).
Prototypes for construction of a Gaussian Stochastic Process emulator (GASP) of a computer model. This is done within the objective Bayesian implementation of the GASP. The package allows for construction of a linked GASP of the composite computer model. Computational implementation follows the mathematical exposition given in publication: Ksenia N. Kyzyurova, James O. Berger, Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, (2018).<DOI:10.1137/17M1157702>.
Enable operationalized evaluation of disease outcomes in multiple sclerosis. â MSoutcomesâ requires longitudinally recorded clinical data structured in long format. The package is based on the research developed at Clinical Outcomes Research unit (CORe), University of Melbourne and Neuroimmunology Centre, Royal Melbourne Hospital. Kalincik et al. (2015) <doi:10.1093/brain/awv258>. Lorscheider et al. (2016) <doi:10.1093/brain/aww173>. Sharmin et al. (2022) <doi:10.1111/ene.15406>. Dzau et al. (2023) <doi:10.1136/jnnp-2023-331748>.
This package provides tools for monitoring progress during parallel processing. Lightweight package which acts as a wrapper around mclapply() and adds a progress bar to it in RStudio or Linux environments. Simply replace your original call to mclapply() with pmclapply(). A progress bar can also be displayed during parallelisation via the foreach package. Also included are functions to safely print messages (including error messages) from within parallelised code, which can be useful for debugging parallelised R code.
Software to support the introductory *MOSAIC Calculus* textbook <https://www.mosaic-web.org/MOSAIC-Calculus/>), one of many data- and modeling-oriented educational resources developed by Project MOSAIC (<https://www.mosaic-web.org/>). Provides symbolic and numerical differentiation and integration, as well as support for applied linear algebra (for data science), and differential equations/dynamics. Includes grammar-of-graphics-based functions for drawing vector fields, trajectories, etc. The software is suitable for general use, but intended mainly for teaching calculus.
This package provides tools for checking that the output of an optimization algorithm is indeed at a local mode of the objective function. This is accomplished graphically by calculating all one-dimensional "projection plots" of the objective function, i.e., varying each input variable one at a time with all other elements of the potential solution being fixed. The numerical values in these plots can be readily extracted for the purpose of automated and systematic unit-testing of optimization routines.
This package provides a robust framework for analyzing the extent to which differential survival with respect to higher level trait variation is reducible to lower level variation. In addition to its primary test, it also provides functions for simulation-based power analysis, reading in common data set formats, and visualizing results. Temporarily contains an edited version of function hr.mcp() from package wild1', written by Glen Sargeant. For tutorial see: http://evolve.zoo.ox.ac.uk/Evolve/Perspectev.html.
This package provides methods for extracting various features from time series data. The features provided are those from Hyndman, Wang and Laptev (2013) <doi:10.1109/ICDMW.2015.104>, Kang, Hyndman and Smith-Miles (2017) <doi:10.1016/j.ijforecast.2016.09.004> and from Fulcher, Little and Jones (2013) <doi:10.1098/rsif.2013.0048>. Features include spectral entropy, autocorrelations, measures of the strength of seasonality and trend, and so on. Users can also define their own feature functions.
eudysbiome a package that permits to annotate the differential genera as harmful/harmless based on their ability to contribute to host diseases (as indicated in literature) or unknown based on their ambiguous genus classification. Further, the package statistically measures the eubiotic (harmless genera increase or harmful genera decrease) or dysbiotic(harmless genera decrease or harmful genera increase) impact of a given treatment or environmental change on the (gut-intestinal, GI) microbiome in comparison to the microbiome of the reference condition.
This package provides functions to obtain an important number of electoral indicators described in the package, which can be divided into two large sections: The first would be the one containing the indicators of electoral disproportionality, such as, Rae index, Loosemoreâ Hanby index, etc. The second group is intended to study the dimensions of the party system vote, through the indicators of electoral fragmentation, polarization, volatility, etc. Moreover, multiple seat allocation simulations can also be performed based on different allocation systems, such as the D'Hondt method, Sainte-Laguë, etc. Finally, some of these functions have been built so that, if the user wishes, the data provided by the Spanish Ministry of Home Office for different electoral processes held in Spain can be obtained automatically. All the above will allow the users to carry out deep studies on the results obtained in any type of electoral process. The methods are described in: Oñate, Pablo and Ocaña, Francisco A. (1999, ISBN:9788474762815); Ruiz Rodrà guez, Leticia M. and Otero Felipe, Patricia (2011, ISBN:9788474766226).