Computes individual causes of death and population cause-specific mortality fractions using the InSilicoVA algorithm from McCormick et al. (2016) <DOI:10.1080/01621459.2016.1152191>. It uses data derived from verbal autopsy (VA) interviews, in a format similar to the input of the widely used InterVA method. This package provides general model fitting and customization for InSilicoVA algorithm and basic graphical visualization of the output.
This package implements differential methylation region (DMR) detection using a multistage Markov chain Monte Carlo (MCMC) algorithm based on the alpha-skew generalized normal (ASGN) distribution. Version 0.2.0 removes the Anderson-Darling test stage, improves computational efficiency of the core ASGN and multistage MCMC routines, and adds convenience functions for summarizing and visualizing detected DMRs. The methodology is based on Yang (2025) <https://www.proquest.com/docview/3218878972>.
Design and analysis of confirmatory adaptive clinical trials using the optimal conditional error framework according to Brannath and Bauer (2004) <doi:10.1111/j.0006-341X.2004.00221.x>. An extension to the optimal conditional error function using interim estimates as described in Brannath and Dreher (2024) <doi:10.48550/arXiv.2402.00814> and functions to ensure that the resulting conditional error function is non-increasing are also available.
Multiple tools are now available for inferring the personalised germ line set from an adaptive immune receptor repertoire. Output from these tools is converted to a single format and supplemented with rich data such as usage and characterisation of novel germ line alleles. This data can be particularly useful when considering the validity of novel inferences. Use of the analysis provided is described in <doi:10.3389/fimmu.2019.00435>.
Web application using shiny for the SSD (Species Sensitivity Distribution) module of the MOSAIC (MOdeling and StAtistical tools for ecotoxICology) platform. It estimates the Hazardous Concentration for x% of the species (HCx) from toxicity values that can be censored and provides various plotting options for a better understanding of the results. See our companion paper Kon Kam King et al. (2014) <doi:10.48550/arXiv.1311.5772>.
Tidal analysis of evenly spaced observed time series (time step 1 to 60 min) with or without shorter gaps using the harmonic representation of inequalities. The analysis should preferably cover an observation period of at least 19 years. For shorter periods low frequency constituents are not taken into account, in accordance with the Rayleigh-Criterion. The main objective of this package is to synthesize or predict a tidal time series.
This package provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
Group-Lasso INTERaction-NET. Fits linear pairwise-interaction models that satisfy strong hierarchy: if an interaction coefficient is estimated to be nonzero, then its two associated main effects also have nonzero estimated coefficients. Accommodates categorical variables (factors) with arbitrary numbers of levels, continuous variables, and combinations thereof. Implements the machinery described in the paper "Learning interactions via hierarchical group-lasso regularization" (JCGS 2015, Volume 24, Issue 3). Michael Lim & Trevor Hastie (2015)
Rustic is a fork of Rust mode. In addition to its predecessor, it offers the following features:
Flycheck integration,
Cargo popup,
multiline error parsing,
translation of ANSI control sequences through XTerm color,
asynchronous Org Babel,
custom compilation process,
rustfmterrors in a Rust compilation mode,automatic LSP configuration with Eglot or LSP mode,
optional Rust inline documentation,
etc.
Offers meta programming style tools to generate configurable R functions that produce HTML forms based on table input and SQL meta data. Also generates functions for collecting the parameters of those HTML forms after they are submitted. Useful for quickly generating HTML forms based on existing SQL tables. To use the resultant functions, the output files containing those functions must be read into the R environment (perhaps using base::source()).
Generates DNA sequences based on Markov model techniques for matched sequences. This can be generalized to several sequences. The sequences (taxa) are then arranged in an evolutionary tree (phylogenetic tree) depicting how taxa diverge from their common ancestors. This gives the tests and estimation methods for the parameters of different models. Standard phylogenetic methods assume stationarity, homogeneity and reversibility for the Markov processes, and often impose further restrictions on the parameters.
This package implements fast, scalable optimization algorithms for fitting generalized principal components analysis (GLM-PCA) models, as described in "A Generalization of Principal Components Analysis to the Exponential Family" Collins M, Dasgupta S, Schapire RE (2002, ISBN:9780262271738), and subsequently "Feature Selection and Dimension Reduction for Single-Cell RNA-Seq Based on a Multinomial Model" Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) <doi:10.1186/s13059-019-1861-6>.
In competing risks regression, the proportional subdistribution hazards (PSH) model is popular for its direct assessment of covariate effects on the cumulative incidence function. This package allows for both penalized and unpenalized PSH regression in linear time using a novel forward-backward scan. Penalties include Ridge, Lease Absolute Shrinkage and Selection Operator (LASSO), Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Plus (MCP), and elastic net <doi: 10.32614/RJ-2021-010>.
This package provides plotting functions for visualizing pedigrees in behavior genetics and kinship research. The package complements BGmisc [Garrison et al. (2024) <doi:10.21105/joss.06203>] by rendering pedigrees using the ggplot2 framework and offers a modern alternative to the base-graphics pedigree plot in kinship2 [Sinnwell et al. (2014) <doi:10.1159/000363105>]. Features include support for duplicated individuals, complex mating structures, integration with simulated pedigrees, and layout customization.
Given a landscape resistance surface, creates minimum planar graph (Fall et al. (2007) <doi:10.1007/s10021-007-9038-7>) and grains of connectivity (Galpern et al. (2012) <doi:10.1111/j.1365-294X.2012.05677.x>) models that can be used to calculate effective distances for landscape connectivity at multiple scales. Documentation is provided by several vignettes, and a paper (Chubaty, Galpern & Doctolero (2020) <doi:10.1111/2041-210X.13350>).
Kernel density estimation with hexagonal grid for bivariate data. Hexagonal grid has many beneficial properties like equidistant neighbours and less edge bias, making it better for spatial analyses than the more commonly used rectangular grid. Carr, D. B. et al. (1987) <doi:10.2307/2289444>. Diggle, P. J. (2010) <doi:10.1201/9781420072884>. Hill, B. (2017) <https://blog.bruce-hill.com/meandering-triangles>. Jones, M. C. (1993) <doi:10.1007/BF00147776>.
Predicts any variable in any categorical dataset for given values of predictor variables. If a dataset contains 4 variables, then any variable can be predicted based on the values of the other three variables given by the user. The user can upload their own datasets and select what variable they want to predict. A handsontable is provided to enter the predictor values and also accuracy of the prediction is also shown.
This package implements the three parallel forecast combinations of Markov Switching GARCH and extreme learning machine model along with the selection of appropriate model for volatility forecasting. For method details see Hsiao C, Wan SK (2014). <doi:10.1016/j.jeconom.2013.11.003>, Hansen BE (2007). <doi:10.1111/j.1468-0262.2007.00785.x>, Elliott G, Gargano A, Timmermann A (2013). <doi:10.1016/j.jeconom.2013.04.017>.
Build CPMs (cumulative probability models, also known as cumulative link models) to account for detection limits (both single and multiple detection limits) in response variables. Conditional quantiles and conditional CDFs can be calculated based on fitted models. The package implements methods described in Tian, Y., Li, C., Tu, S., James, N. T., Harrell, F. E., & Shepherd, B. E. (2022). "Addressing Detection Limits with Semiparametric Cumulative Probability Models". <arXiv:2207.02815>.
Bayesian logistic regression model with optional EXchangeability-NonEXchangeability parameter modelling for flexible borrowing from historical or concurrent data-sources. The safety model can guide dose-escalation decisions for adaptive oncology Phase I dose-escalation trials which involve an arbitrary number of drugs. Please refer to Neuenschwander et al. (2008) <doi:10.1002/sim.3230> and Neuenschwander et al. (2016) <doi:10.1080/19466315.2016.1174149> for details on the methodology.
This package provides a framework for building enterprise, scalable and UI-standardized shiny applications. It brings enhanced features such as bootstrap v4 <https://getbootstrap.com/docs/4.0/getting-started/introduction/>, additional and enhanced shiny modules, customizable UI features, as well as an enhanced application file organization paradigm. This update allows developers to harness the ability to build powerful applications and enriches the shiny developers experience when building and maintaining applications.
Tide analysis and prediction of predominantly semi-diurnal tides with two high waters and two low waters during one lunar day (~24.842 hours, ~1.035 days). The analysis should preferably cover an observation period of at least 19 years. For shorter periods, for example, the nodal cycle can not be taken into account, which particularly affects the height calculation. The main objective of this package is to produce tide tables.
This package provides a toolkit to detect clusters from distance matrices. The distance matrices are assumed to be calculated between the cells of multiple animals ('Caenorhabditis elegans') from input time-series matrices. Some functions for generating distance matrices, performing clustering, evaluating the clustering, and visualizing the results of clustering and evaluation are available. We're also providing the download function to retrieve the calculated distance matrices from figshare <https://figshare.com>.
The Hashery is a tight collection of Hash-like classes. Included are the auto-sorting Dictionary class, the efficient LRUHash, the flexible OpenHash and the convenient KeyHash. Nearly every class is a subclass of the CRUDHash which defines a CRUD (Create, Read, Update and Delete) model on top of Ruby's standard Hash making it possible to subclass and augment to fit any specific use case.