Web front end for your R functions producing plots or tables. If you have a function or set of related functions, you can make them available over the internet through a web browser. This is the same motivation as the shiny package, but note that the development of shinylight is not in any way linked to that of shiny (beyond the use of the httpuv package). You might prefer shinylight to shiny if you want a lighter weight deployment with easier horizontal scaling, or if you want to develop your front end yourself in JavaScript and HTML just using a lightweight remote procedure call interface to your R code on the server.
Intense parallel workloads can be difficult to monitor. Packages crew.cluster, clustermq, and future.batchtools distribute hundreds of worker processes over multiple computers. If a worker process exhausts its available memory, it may terminate silently, leaving the underlying problem difficult to detect or troubleshoot. Using the autometric package, a worker can proactively monitor itself in a detached background thread. The worker process itself runs normally, and the thread writes to a log every few seconds. If the worker terminates unexpectedly, autometric can read and visualize the log file to reveal potential resource-related reasons for the crash. The autometric package borrows heavily from the methods of packages ps and psutil.
Simulation of species diversification, fossil records, and phylogenies. While the literature on species birth-death simulators is extensive, including important software like paleotree and APE', we concluded there were interesting gaps to be filled regarding possible diversification scenarios. Here we strove for flexibility over focus, implementing a large array of regimens for users to experiment with and combine. In this way, paleobuddy can be used in complement to other simulators as a flexible jack of all trades, or, in the case of scenarios implemented only here, can allow for robust and easy simulations for novel situations. Environmental data modified from that in RPANDA': Morlon H. et al (2016) <doi:10.1111/2041-210X.12526>.
This package provides a set of functions to support experimentation in the utility of partially synthetic data sets. All functions compare an observed data set to one or a set of partially synthetic data sets derived from the observed data to (1) check that data sets have identical attributes, (2) calculate overall and specific variable perturbation rates, (3) check for potential logical inconsistencies, and (4) calculate confidence intervals and standard errors of desired variables in multiple imputed data sets. Confidence interval and standard error formulas have options for either synthetic data sets or multiple imputed data sets. For more information on the formulas and methods used, see Reiter & Raghunathan (2007) <doi:10.1198/016214507000000932>.
Copula-based regression models for multivariate censored data, including bivariate right-censored data, bivariate interval-censored data, and right/interval-censored semi-competing risks data. Currently supports Clayton, Gumbel, Frank, Joe, AMH and Copula2 copula models. For marginal models, it supports parametric (Weibull, Loglogistic, Gompertz) and semiparametric (Cox and transformation) models. Includes methods for convenient prediction and plotting. Also provides a bivariate time-to-event simulation function and an information ratio-based goodness-of-fit test for copula. Method details can be found in Sun et.al (2019) Lifetime Data Analysis, Sun et.al (2021) Biostatistics, Sun et.al (2022) Statistical Methods in Medical Research, Sun et.al (2022) Biometrics, and Sun et al. (2023+) JRSSC.
This package provides a dataset containing several color naming conventions established by multiple sources, along with associated color metadata. The package also provides related helper functions for mapping among the different Lego color naming conventions and between Lego colors, hex colors, and R color names, making it easy to convert any color palette to one based on existing Lego colors while keeping as close to the original color palette as possible. The functions use nearest color matching based on Euclidean distance in RGB space. Naming conventions for color mapping include those from BrickLink (<https://www.bricklink.com>), The Lego Group (<https://www.lego.com>), LDraw (<https://www.ldraw.org/>), and Peeron (<http://www.peeron.com/>).
This package provides in built datasets and three functions. These functions are mobility_index, nonStanTest and linkedLives. The mobility_index function facilitates the calculation of lifecourse fluidity, whilst the nonStanTest and the linkedLives functions allow the user to determine the probability that the observed sequence data was due to chance. The linkedLives function acknowledges the fact that some individuals may have identical sequences. The datasets available provide sequence data on marital status(maritalData) and mobility (mydata) for a selected group of individuals from the British Household Panel Study (BHPS). In addition, personal and house ID's for 100 individuals are provided in a third dataset (myHouseID) from the BHPS.
This package provides several direct search optimization algorithms based on the simplex method. The provided algorithms are direct search algorithms, i.e. algorithms which do not use the derivative of the cost function. They are based on the update of a simplex. The following algorithms are available: the fixed shape simplex method of Spendley, Hext and Himsworth (unconstrained optimization with a fixed shape simplex, 1962) <doi:10.1080/00401706.1962.10490033>, the variable shape simplex method of Nelder and Mead (unconstrained optimization with a variable shape simplex made, 1965) <doi:10.1093/comjnl/7.4.308>, and Box's complex method (constrained optimization with a variable shape simplex, 1965) <doi: 10.1093/comjnl/8.1.42>.
This package implements the framework presented in Cucci, D. A., Voirol, L., Khaghani, M. and Guerrier, S. (2023) <doi:10.1109/TIM.2023.3267360> which allows to analyze the impact of sensor error modeling on the performance of integrated navigation (sensor fusion) based on inertial measurement unit (IMU), Global Positioning System (GPS), and barometer data. The framework relies on Monte Carlo simulations in which a Vanilla Extended Kalman filter is coupled with realistic and user-configurable noise generation mechanisms to recover a reference trajectory from noisy measurements. The evaluation of several statistical metrics of the solution, aggregated over hundreds of simulated realizations, provides reasonable estimates of the expected performances of the system in real-world conditions.
Analysis of protein expression data can be done through Principal Component Analysis (PCA), and this R package is designed to streamline the analysis. This package enables users to perform PCA and it generates biplot and scree plot for advanced graphical visualization. Optionally, it supports grouping/clustering visualization with PCA loadings and confidence ellipses. With this R package, researchers can quickly explore complex protein datasets, interpret variance contributions, and visualize sample clustering through intuitive biplots. For more details, see Jolliffe (2001) <doi:10.1007/b98835>, Gabriel (1971) <doi:10.1093/biomet/58.3.453>, Zhang et al. (2024) <doi:10.1038/s41467-024-53239-9>, and Anandan et al. (2022) <doi:10.1038/s41598-022-07781-5>.
This package provides tools to apply Ensemble Empirical Mode Decomposition (EEMD) for cyclostratigraphy purposes. Mainly: a new algorithm, extricate, that performs EEMD in seconds, a linear interpolation algorithm using the greatest rational common divisor of depth or time, different algorithms to compute instantaneous amplitude, frequency and ratios of frequencies, and functions to verify and visualise the outputs. The functions were developed during the CRASH project (Checking the Reproducibility of Astrochronology in the Hauterivian). When using for publication please cite Wouters, S., Crucifix, M., Sinnesael, M., Da Silva, A.C., Zeeden, C., Zivanovic, M., Boulvain, F., Devleeschouwer, X., 2022, "A decomposition approach to cyclostratigraphic signal processing". Earth-Science Reviews 225 (103894). <doi:10.1016/j.earscirev.2021.103894>.
Power and Sample Size for Health Researchers is a Shiny application that brings together a series of functions related to sample size and power calculations for common analysis in the healthcare field. There are functionalities to calculate the power, sample size to estimate or test hypotheses for means and proportions (including test for correlated groups, equivalence, non-inferiority and superiority), association, correlations coefficients, regression coefficients (linear, logistic, gamma, and Cox), linear mixed model, Cronbach's alpha, interobserver agreement, intraclass correlation coefficients, limit of agreement on Bland-Altman plots, area under the curve, sensitivity and specificity incorporating the prevalence of disease. You can also use the online version at <https://hcpa-unidade-bioestatistica.shinyapps.io/PSS_Health/>.
Implement a promising, and yet little explored protocol for bioacoustical analysis, the eigensound method by MacLeod, Krieger and Jones (2013) <doi:10.4404/hystrix-24.1-6299>. Eigensound is a multidisciplinary method focused on the direct comparison between stereotyped sounds from different species. SoundShape', in turn, provide the tools required for anyone to go from sound waves to Principal Components Analysis, using tools extracted from traditional bioacoustics (i.e. tuneR and seewave packages), geometric morphometrics (i.e. geomorph package) and multivariate analysis (e.g. stats package). For more information, please see Rocha and Romano (2021) and check SoundShape repository on GitHub for news and updates <https://github.com/p-rocha/SoundShape>.
Uses the Distorted Wave Born Approximation (DWBA) to compute the acoustic backward scattering, the geometry of the object is formed by a volumetric mesh, composed of tetrahedrons. This computation is done efficiently through an analytical 3D integration that allows for a solution which is expressed in terms of elementary functions for each tetrahedron. It is important to note that this method is only valid for objects whose acoustic properties, such as density and sound speed, do not vary significantly compared to the surrounding medium. (See Lavia, Cascallares and Gonzalez, J. D. (2023). TetraScatt model: Born approximation for the estimation of acoustic dispersion of fluid-like objects of arbitrary geometries. arXiv preprint <arXiv:2312.16721>).
Estimation of crop water demand can be processed via this package. As example, the data from TerraClimate dataset (<https://www.climatologylab.org/terraclimate.html>) calibrated with automatic weather stations of National Meteorological Institute of Brazil is available in a coarse spatial resolution to do the crop water demand. However, the user have also the option to download the variables directly from TerraClimate repository with the download.terraclimate function and access the original TerraClimate products. If the user believes that is necessary calibrate the variables, there is another function to do it. Lastly, the estimation of the crop water demand present in this package can be run for all the Brazilian territory with TerraClimate dataset.
Calculates marginal effects and conducts process analysis in exponential family random graph models (ERGM). Includes functions to conduct mediation and moderation analyses and to diagnose multicollinearity. URL: <https://github.com/sduxbury/ergMargins>. BugReports: <https://github.com/sduxbury/ergMargins/issues>. Duxbury, Scott W (2021) <doi:10.1177/0049124120986178>. Long, J. Scott, and Sarah Mustillo (2018) <doi:10.1177/0049124118799374>. Mize, Trenton D. (2019) <doi:10.15195/v6.a4>. Karlson, Kristian Bernt, Anders Holm, and Richard Breen (2012) <doi:10.1177/0081175012444861>. Duxbury, Scott W (2018) <doi:10.1177/0049124118782543>. Duxbury, Scott W, Jenna Wertsching (2023) <doi:10.1016/j.socnet.2023.02.003>. Huang, Peng, Carter Butts (2023) <doi:10.1016/j.socnet.2023.07.001>.
Some functions of ade4 and stats are combined in order to obtain a partition of the rows of a data table, with columns representing variables of scales: quantitative, qualitative or frequency. First, a principal axes method is performed and then, a combination of Ward agglomerative hierarchical classification and K-means is performed, using some of the first coordinates obtained from the previous principal axes method. In order to permit different weights of the elements to be clustered, the function kmeansW', programmed in C++, is included. It is a modification of kmeans'. Some graphical functions include the option: gg=FALSE'. When gg=TRUE', they use the ggplot2 and ggrepel packages to avoid the super-position of the labels.
An implementation of the International Bureau of Weights and Measures (BIPM) generalized consensus estimators used to assign the reference value in a key comparison exercise. This can also be applied to any interlaboratory study. Given a set of different sources, primary laboratories or measurement methods this package provides an evaluation of the variance components according to the selected statistical method for consensus building. It also implements the comparison among different consensus builders and evaluates the participating method or sources against the consensus reference value. Based on a diverse set of references, DerSimonian-Laird (1986) <doi:10.1016/0197-2456(86)90046-2>, for a complete list of references look at the reference section in the package documentation.
This package provides a collection of functions for processing Gen5 2.06 exported data. Gen5 is an essential data analysis software for BioTek plate readers <https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/>. This package contains functions for data cleaning, modeling and plotting using exported data from Gen5 version 2.06. It exports technically correct data defined in (Edwin de Jonge and Mark van der Loo (2013) <https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf>) for customized analysis. It contains Boltzmann fitting for general kinetic analysis. See <https://www.github.com/yanxianUCSB/gen5helper> for more information, documentation and examples.
Easily construct prompts and associated logic for interacting with large language models (LLMs). tidyprompt introduces the concept of prompt wraps, which are building blocks that you can use to quickly turn a simple prompt into a complex one. Prompt wraps do not just modify the prompt text, but also add extraction and validation functions that will be applied to the response of the LLM. This ensures that the user gets the desired output. tidyprompt can add various features to prompts and their evaluation by LLMs, such as structured output, automatic feedback, retries, reasoning modes, autonomous R function calling, and R code generation and evaluation. It is designed to be compatible with any LLM provider that offers chat completion.
Interface to TensorFlow <https://www.tensorflow.org/>, an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API'. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
Students learning both econometrics and R may find the introduction to both challenging. The wooldridge data package aims to lighten the task by efficiently loading any data set found in the text with a single command. Data sets have been compressed to a fraction of their original size. Documentation files contain page numbers, the original source, time of publication, and notes from the author suggesting avenues for further analysis and research. If one needs an introduction to R model syntax, a vignette contains solutions to examples from chapters of the text. Data sets are from the 7th edition (Wooldridge 2020, ISBN-13 978-1-337-55886-0), and are backwards compatible with all previous versions of the text.
This is a package for normalization, testing for differential variability and differential methylation and gene set testing for data from Illumina's Infinium HumanMethylation arrays. The normalization procedure is subset-quantile within-array normalization (SWAN), which allows Infinium I and II type probes on a single array to be normalized together. The test for differential variability is based on an empirical Bayes version of Levene's test. Differential methylation testing is performed using RUV, which can adjust for systematic errors of unknown origin in high-dimensional data by using negative control probes. Gene ontology analysis is performed by taking into account the number of probes per gene on the array, as well as taking into account multi-gene associated probes.
Highly multiplexed imaging acquires the single-cell expression of selected proteins in a spatially-resolved fashion. These measurements can be visualised across multiple length-scales. First, pixel-level intensities represent the spatial distributions of feature expression with highest resolution. Second, after segmentation, expression values or cell-level metadata (e.g. cell-type information) can be visualised on segmented cell areas. This package contains functions for the visualisation of multiplexed read-outs and cell-level information obtained by multiplexed imaging technologies. The main functions of this package allow 1. the visualisation of pixel-level information across multiple channels, 2. the display of cell-level information (expression and/or metadata) on segmentation masks and 3. gating and visualisation of single cells.