MUMPS (MUltifrontal Massively Parallel sparse direct Solver) solves a sparse system of linear equations A x = b using Gaussian elimination.
Mudata is a Python package for multi-omics data analysis. It is designed to provide functionality to load, process, and store multimodal omics data.
This Common Lisp package offers an implementation of the 32-bit variant of MurmurHash3 (https://github.com/aappleby/smhasher), a fast non-crytographic hashing algorithm.
Give access to MUI X Tree View components, which lets users navigate hierarchical lists of data with nested levels that can be expanded and collapsed.
Efficiently estimates single- and multilevel latent class models with covariates, allowing for output visualization in all specifications. For more technical details, see Lyrvall et al. (2025) <doi:10.1080/00273171.2025.2473935>.
Process OpenPose human body keypoints for computer vision, including data structuring and user-defined linear transformations for standardization. It optionally, includes metadata extraction from filenames in the UCLA NewsScape archive.
Deploy file changes across multiple GitHub repositories using the GitHub Web API <https://docs.github.com/en/rest>. Allows synchronizing common files, Continuous Integration ('CI') workflows, or configurations across many repositories with a single command.
This package provides methods and models for analysing multigraphs as introduced by Shafie (2015) <doi:10.21307/joss-2019-011>, including methods to study local and global properties <doi:10.1080/0022250X.2016.1219732> and goodness of fit tests.
Fit Cox proportional hazard models with a weighted partial likelihood. It handles one or multiple endpoints, additional matching and makes it possible to reuse controls for other endpoints Stoer NC and Samuelsen SO (2016) <doi:10.32614/rj-2016-030>.
Multiply robust estimation for population mean (Han and Wang 2013) <doi:10.1093/biomet/ass087>, regression analysis (Han 2014) <doi:10.1080/01621459.2014.880058> (Han 2016) <doi:10.1111/sjos.12177> and quantile regression (Han et al. 2019) <doi:10.1111/rssb.12309>.
This package provides a set of user interface components for building shiny applications and quarto documents, including inputs, layouts, navigation, surfaces, and various utilities. All components Material UI from the company MUI <https://mui.com/> are available and all inputs have usage examples in R.
Mustache is a framework-agnostic way to render logic-free views. Think of Mustache as a replacement for your views. Instead of views consisting of ERB or HAML with random helpers and arbitrary logic, your views are broken into two parts: a Ruby class and an HTML template.
Uses multiple AUCs to select a combination of predictors when the outcome has multiple (ordered) levels and the focus is discriminating one particular level from the others. This method is most naturally applied to settings where the outcome has three levels. (Meisner, A, Parikh, CR, and Kerr, KF (2017) <http://biostats.bepress.com/uwbiostat/paper423/>.).
This package is for designing Crispr/Cas9 and Prime Editing experiments. It contains functions to (1) define and transform genomic targets, (2) find spacers (4) count offtarget (mis)matches, and (5) compute Doench2016/2014 targeting efficiency. Care has been taken for multicrispr to scale well towards large target sets, enabling the design of large Crispr/Cas9 libraries.
Helm sources for searching emails and contacts using mu and mu4e. Mu is an indexer for maildirs and mu4e is a mutt-like MUA for Emacs build on top of mu. Mu is highly efficient making it possible to get instant results even for huge maildirs. It also provides search operators, e.g: from:Peter to:Anne flag:attach search term.
GDB is the GNU debugger. With it, you can monitor what a program is doing while it runs or what it was doing just before a crash. It allows you to specify the runtime conditions, to define breakpoints, and to change how the program is running to try to fix bugs. It can be used to debug programs written in C, C++, Ada, Objective-C, Pascal and more.
The provided package implements multiple contrast tests for functional data (Munko et al., 2023, <arXiv:2306.15259>). These procedures enable us to evaluate the overall hypothesis regarding equality, as well as specific hypotheses defined by contrasts. In particular, we can perform post hoc tests to examine particular comparisons of interest. Different experimental designs are supported, e.g., one-way and multi-way analysis of variance for functional data.
This package provides a latent variable model based on factor analytic and mixture of experts models, designed to infer food intake from multiple biomarkers data. The model is framed within a Bayesian hierarchical framework, which provides flexibility to adapt to different biomarker distributions and facilitates inference on food intake from biomarker data alone, along with the associated uncertainty. Details are in D'Angelo, et al. (2020) <arXiv:2006.02995>.
This package provides a tool for optimizing scales of effect when modeling ecological processes in space. Specifically, the scale parameter of a distance-weighted kernel distribution is identified for all environmental layers included in the model. Includes functions to assist in model selection, model evaluation, efficient transformation of raster surfaces using fast Fourier transformation, and projecting models. For more details see Peterman (2025) <doi:10.21203/rs.3.rs-7246115/v1>.
Code to support a systems biology research program from inception through publication. The methods focus on dimension reduction approaches to detect patterns in complex, multivariate experimental data and places an emphasis on informative visualizations. The goal for this project is to create a package that will evolve over time, thereby remaining relevant and reflective of current methods and techniques. As a result, we encourage suggested additions to the package, both methodological and graphical.
Evaluate hypotheses concerning the distribution of multinomial proportions using bridge sampling. The bridge sampling routine is able to compute Bayes factors for hypotheses that entail inequality constraints, equality constraints, free parameters, and mixtures of all three. These hypotheses are tested against the encompassing hypothesis, that all parameters vary freely or against the null hypothesis that all category proportions are equal. For more information see Sarafoglou et al. (2020) <doi:10.31234/osf.io/bux7p>.
This package implements analytical methods for multidimensional plant traits, including Competitors-Stress tolerators-Ruderals strategy analysis using leaf traits, Leaf-Height-Seed strategy analysis, Niche Periodicity Table analysis, and Trait Network analysis. Provides functions for data analysis, visualization, and network metrics calculation. Methods are based on Grime (1974) <doi:10.1038/250026a0>, Pierce et al. (2017) <doi:10.1111/1365-2435.12882>, Westoby (1998) <doi:10.1023/A:1004327224729>, Winemiller et al. (2015) <doi:10.1111/ele.12462>, He et al. (2020) <doi:10.1016/j.tree.2020.06.003>.
Several multivariate techniques from a biplot perspective. It is the translation (with many improvements) into R of the previous package developed in Matlab'. The package contains some of the main developments of my team during the last 30 years together with some more standard techniques. Package includes: Classical Biplots, HJ-Biplot, Canonical Biplots, MANOVA Biplots, Correspondence Analysis, Canonical Correspondence Analysis, Canonical STATIS-ACT, Logistic Biplots for binary and ordinal data, Multidimensional Unfolding, External Biplots for Principal Coordinates Analysis or Multidimensional Scaling, among many others. References can be found in the help of each procedure.
Two method new of multigroup and simulation of data. The first technique called multigroup PCA (mgPCA) this multivariate exploration approach that has the idea of considering the structure of groups and / or different types of variables. On the other hand, the second multivariate technique called Multigroup Dimensionality Reduction (MDR) it is another multivariate exploration method that is based on projections. In addition, a method called Single Dimension Exploration (SDE) was incorporated for to analyze the exploration of the data. It could help us in a better way to observe the behavior of the multigroup data with certain variables of interest.