Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Short for linear binning', the linbin package provides functions for manipulating, binning, and plotting linearly referenced data. Although developed for data collected on river networks, it can be used with any interval or point data referenced to a 1-dimensional coordinate system. Flexible bin generation and batch processing makes it easy to compute and visualize variables at multiple scales, useful for identifying patterns within and between variables and investigating the influence of scale of observation on data interpretation.
Local Polynomial Regression with Ridging.
This package implements Cumulative Sum (CUSUM) control charts specifically designed for monitoring processes following a Gamma distribution. Provides functions to estimate distribution parameters, simulate control limits, and apply cautious learning schemes for adaptive thresholding. It supports upward and downward monitoring with guaranteed performance evaluated via Monte Carlo simulations. It is useful for quality control applications in industries where data follows a Gamma distribution. Methods are based on Madrid-Alvarez et al. (2024) <doi:10.1002/qre.3464> and Madrid-Alvarez et al. (2024) <doi:10.1080/08982112.2024.2440368>.
An educational package for teaching statistics and mathematics in both primary and higher education. The objective is to assist in the teaching/learning process, both for student study planning and teacher teaching strategies. The leem package aims to provide, in a simple yet in-depth manner, knowledge of statistics and mathematics to anyone who wants to study these areas of knowledge.
Estimation of latent class models with individual covariates for capture-recapture data. See Bartolucci, F. and Forcina, A. (2022), Estimating the size of a closed population by modeling latent and observed heterogeneity, Biometrics, 80(2), ujae017.
This package performs recursive partitioning of linear and nonlinear mixed effects models, specifically for longitudinal data. The package is an extension of the original longRPart package by Stewart and Abdolell (2013) <https://cran.r-project.org/package=longRPart>.
Shiny apps for the quantitative analysis of images from lateral flow assays (LFAs). The images are segmented and background corrected and color intensities are extracted. The apps can be used to import and export intensity data and to calibrate LFAs by means of linear, loess, or gam models. The calibration models can further be saved and applied to intensity data from new images for determining concentrations.
This package implements non-parametric tests from Higgins (2004, ISBN:0534387756), including tests for one sample, two samples, k samples, paired comparisons, blocked designs, trends and association. Built with Rcpp for efficiency and R6 for flexible, object-oriented design, the package provides a unified framework for performing or creating custom permutation tests.
This package provides a classification tree method that uses Uncorrelated Linear Discriminant Analysis (ULDA) for variable selection, split determination, and model fitting in terminal nodes. It automatically handles missing values and offers visualization tools. For more details, see Wang (2024) <doi:10.48550/arXiv.2410.23147>.
Includes some procedures for latent variable modeling with a particular focus on multilevel data. The LAM package contains mean and covariance structure modelling for multivariate normally distributed data (mlnormal(); Longford, 1987; <doi:10.1093/biomet/74.4.817>), a general Metropolis-Hastings algorithm (amh(); Roberts & Rosenthal, 2001, <doi:10.1214/ss/1015346320>) and penalized maximum likelihood estimation (pmle(); Cole, Chu & Greenland, 2014; <doi:10.1093/aje/kwt245>).
Data sets for Chirok Han (2024, ISBN:979-11-303-1964-3, "Lectures on Econometrics"). Students, teachers, and self-learners will find the data sets essential for replicating the results in the book.
The LIC criterion is to determine the most informative subsets so that the subset can retain most of the information contained in the complete data. The philosophy of the package is described in Guo G. (2022) <doi:10.1080/02664763.2022.2053949>.
Various plots and functions that make use of the lattice/trellis plotting framework. The plots, which include loaPlot(), loaMapPlot() and trianglePlot(), and use panelPal(), a function that extends lattice and hexbin package methods to automate plot subscript and panel-to-panel and panel-to-key synchronization/management.
Create interactive time series visualizations. linevis includes an extensive API to manipulate time series after creation, and supports getting data out of the visualization. Based on the timevis package and the vis.js Timeline JavaScript library <https://visjs.github.io/vis-timeline/docs/graph2d/>.
This package provides a simple mechanism to specify a symmetric block diagonal matrices (often used for covariance matrices). This is based on the domain specific language implemented in nlmixr2 but expanded to create matrices in R generally instead of specifying parts of matrices to estimate. It has expanded to include some matrix manipulation functions that are generally useful for rxode2 and nlmixr2'.
Set of the data science tools created by various members of the Long Term Ecological Research (LTER) community. These functions were initially written largely as standalone operations and have later been aggregated into this package.
We present a method based on filtering algorithms to estimate the parameters of linear, i.e. the coefficients and the variance of the error term. The proposed algorithms make use of Particle Filters following Ristic, B., Arulampalam, S., Gordon, N. (2004, ISBN: 158053631X) resampling methods. Parameters of logistic regression models are also estimated using an evolutionary particle filter method.
This package provides tools for model specification in the latent variable framework (add-on to the lava package). The package contains three main functionalities: Wald tests/F-tests with improved control of the type 1 error in small samples, adjustment for multiple comparisons when searching for local dependencies, and adjustment for multiple comparisons when doing inference for multiple latent variable models.
This package provides a system for accurately designing complex light regimes using LEDs. Takes calibration data and user-defined target irradiances and it tells you what intensities to use. For more details see Vong et al. (2025) <doi:10.1101/2025.06.06.658293>.
Analysis, imputation, and multiple imputation of count data using covariates. LORI uses a log-linear Poisson model where main row and column effects, as well as effects of known covariates and interaction terms can be fitted. The estimation procedure is based on the convex optimization of the Poisson loss penalized by a Lasso type penalty and a nuclear norm. LORI returns estimates of main effects, covariate effects and interactions, as well as an imputed count table. The package also contains a multiple imputation procedure. The methods are described in Robin, Josse, Moulines and Sardy (2019) <doi:10.1016/j.jmva.2019.04.004>.
L-systems or Lindenmayer systems are parallel rewriting systems which can be used to simulate biological forms and certain kinds of fractals. Briefly, in an L-system a series of symbols in a string are replaced iteratively according to rules to give a more complex string. Eventually, the symbols are translated into turtle graphics for plotting. Wikipedia has a very good introduction: en.wikipedia.org/wiki/L-system This package provides basic functions for exploring L-systems.
Given independent and identically distributed observations X(1), ..., X(n), compute the maximum likelihood estimator (MLE) of a density as well as a smoothed version of it under the assumption that the density is log-concave, see Rufibach (2007) and Duembgen and Rufibach (2009). The main function of the package is logConDens that allows computation of the log-concave MLE and its smoothed version. In addition, we provide functions to compute (1) the value of the density and distribution function estimates (MLE and smoothed) at a given point (2) the characterizing functions of the estimator, (3) to sample from the estimated distribution, (5) to compute a two-sample permutation test based on log-concave densities, (6) the ROC curve based on log-concave estimates within cases and controls, including confidence intervals for given values of false positive fractions (7) computation of a confidence interval for the value of the true density at a fixed point. Finally, three datasets that have been used to illustrate log-concave density estimation are made available.
Allows identification of palettes derived from LTER (Long Term Ecological Research) photographs based on user criteria. Also facilitates extraction of palettes from users photos directly.
Auxiliary package for better/faster analytics, visualization, data mining, and machine learning tasks. With a wide variety of family functions, like Machine Learning, Data Wrangling, Marketing Mix Modeling (Robyn), Exploratory, API, and Scrapper, it helps the analyst or data scientist to get quick and robust results, without the need of repetitive coding or advanced R programming skills.