This package provides essential checklists for R package developers, whether you're creating your first package or beginning a new project. This tool guides you through each step of the development process, including specific considerations for submitting your package to the Comprehensive R Archive Network (CRAN). Simplify your workflow and ensure adherence to best practices with packagepal'.
Uses provenance post-execution to help the user understand and debug their script by providing functions to look at intermediate steps and data values, their forwards and backwards lineage, and to understand the steps leading up to warning and error messages. provDebugR
uses provenance produced by rdtLite
(available on CRAN), stored in PROV-JSON format.
This package implements an extension of the Chacko chi-square test for ordered vectors (Chacko, 1966, <https://www.jstor.org/stable/25051572>). Our extension brings the Chacko test to the computer age by implementing a permutation test to offer a numeric estimate of the p-value, which is particularly useful when the analytic solution is not available.
Perform simultaneous estimation and variable selection for correlated bivariate mixed outcomes (one continuous outcome and one binary outcome per cluster) using penalized generalized estimating equations. In addition, clustered Gaussian and binary outcomes can also be modeled. The SCAD, MCP, and LASSO penalties are supported. Cross-validation can be performed to find the optimal regularization parameter(s).
Quasi-Cauchy quantile regression, proposed by de Oliveira, Ospina, Leiva, Figueroa-Zuniga and Castro (2023) <doi:10.3390/fractalfract7090667>. This regression model is useful for the case where you want to model data of a nature limited to the intervals [0,1], (0,1], [0,1) or (0,1) and you want to use a quantile approach.
Uses the optimal test design approach by Birnbaum (1968, ISBN:9781593119348) and van der Linden (2018) <doi:10.1201/9781315117430> to construct fixed, adaptive, and parallel tests. Supports the following mixed-integer programming (MIP) solver packages: Rsymphony', highs', gurobi', lpSolve
', and Rglpk'. The gurobi package is not available from CRAN; see <https://www.gurobi.com/downloads/>.
This package provides functions to support economic modelling in R based on the methods of the Dutch guideline for economic evaluations in healthcare <https://www.zorginstituutnederland.nl/publicaties/publicatie/2024/01/16/richtlijn-voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg>, CBS data <https://www.cbs.nl/>, and OECD data <https://www.oecd.org/en.html>.
An integrated R interface to several United States Census Bureau APIs (<https://www.census.gov/data/developers/data-sets.html>) and the US Census Bureau's geographic boundary files. Allows R users to return Census and ACS data as tidyverse-ready data frames, and optionally returns a list-column with feature geometry for mapping and spatial analysis.
Detect binding sites using motifs IUPAC sequence or bed coordinates and ChIP-seq
experiments in bed or bam format. Combine/compare binding sites across experiments, tissues, or conditions. All normalization and differential steps are done using TMM-GLM method. Signal decomposition is done by setting motifs as the centers of the mixture of normal distribution curves.
The nls.lm
function provides an R interface to lmder
and lmdif
from the MINPACK library, for solving nonlinear least-squares problems by a modification of the Levenberg-Marquardt algorithm, with support for lower and upper parameter bounds. The implementation can be used via nls
-like calls using the nlsLM
function.
Processing and visualizing concept mapping data. Concept maps are versatile tools used across disciplines to enhance understanding, teaching, brainstorming, and information organization. The analysis of concept mapping data involves the sequential use of cluster analysis (for sorting participants and statements), multidimensional scaling (for positioning statements in a conceptual space), and visualization techniques, including point cluster maps and dendrograms.
This package implements functions for comparing strings, sequences and numeric vectors for clustering and record linkage applications. Supported comparison functions include: generalized edit distances for comparing sequences/strings, Monge-Elkan similarity for fuzzy comparison of token sets, and L-p distances for comparing numeric vectors. Where possible, comparison functions are implemented in C/C++ to ensure good performance.
Data sets for the chapter "Ensemble Postprocessing with R" of the book Stephane Vannitsem, Daniel S. Wilks, and Jakob W. Messner (2018) "Statistical Postprocessing of Ensemble Forecasts", Elsevier, 362pp. These data sets contain temperature and precipitation ensemble weather forecasts and corresponding observations at Innsbruck/Austria. Additionally, a demo with the full code of the book chapter is provided.
Causal mediation analysis for a single exposure/treatment and a single mediator, both allowed to be either continuous or binary. The package implements the difference method and provides point and interval estimates as well as testing for the natural direct and indirect effects and the mediation proportion. Nevo, Xiao and Spiegelman (2017) <doi:10.1515/ijb-2017-0006>.
Boxplots adapted to the happenstance of missing observations where drop-out probabilities can be given by the practitioner or modelled using auxiliary covariates. The paper of "Zhang, Z., Chen, Z., Troendle, J. F. and Zhang, J.(2012) <doi:10.1111/j.1541-0420.2011.01712.x>", proposes estimators of marginal quantiles based on the Inverse Probability Weighting method.
Facilitates the incorporation of biological processes in biogeographical analyses. It offers conveniences in fitting, comparing and extrapolating models of biological processes such as physiology and phenology. These spatial extrapolations can be informative by themselves, but also complement traditional correlative species distribution models, by mixing environmental and process-based predictors. Caetano et al (2020) <doi:10.1111/oik.07123>.
This package contains the function mice.impute.midastouch()
. Technically this function is to be run from within the mice package (van Buuren et al. 2011), type ??mice. It substitutes the method pmm within mice by midastouch'. The authors have shown that midastouch is superior to default pmm'. Many ideas are based on Siddique / Belin 2008's MIDAS.
This package provides a data set package with the "Orsi" and "Park/Durand" fronts as SpatialLinesDataFrame
objects. The Orsi et al. (1995) fronts are published at the Southern Ocean Atlas Database Page, and the Park et al. (2019) fronts are published at the SEANOE Altimetry-derived Antarctic Circumpolar Current fronts page, please see package CITATION for details.
All the methods in this package generate a vector of uniform order statistics using a beta distribution and use an inverse cumulative distribution function for some distribution to give a vector of random order statistic variables for some distribution. This is much more efficient than using a loop since it is directly sampling from the order statistic distribution.
This package provides access to granular sub-national income data from the MCC-PIK Database Of Sub-national Economic Output (DOSE). The package downloads and processes the data from its open repository on Zenodo (<https://zenodo.org/records/13773040>). Functions are provided to fetch data at multiple geographic levels, match coordinates to administrative regions, and access associated geometries.
The employment of the Wavelet decomposition technique proves to be highly advantageous in the modelling of noisy time series data. Wavelet decomposition technique using the "haar" algorithm has been incorporated to formulate a hybrid Wavelet KNN (K-Nearest Neighbour) model for time series forecasting, as proposed by Anjoy and Paul (2017) <DOI:10.1007/s00521-017-3289-9>.
The genetic algorithm is designed to optimize wind farms of any shape. It requires a predefined amount of turbines, a unified rotor radius and an average wind speed value for each incoming wind direction. A terrain effect model can be included that downloads an SRTM elevation model and loads a Corine Land Cover raster to approximate surface roughness.
Extremely fast hashing of R objects using xxHash
'. R objects are hashed via the standard serialization mechanism in R. Raw byte vectors and strings can be handled directly for compatibility with hashes created on other systems. This implementation is a wrapper around the xxHash
C library which is available from <https://github.com/Cyan4973/xxHash>
.
knowYourCG
automates the functional analysis of DNA methylation data. The package tests the enrichment of discrete CpG
probes across thousands of curated biological and technical features. GSEA-like analysis can be performed on continuous methylation data query sets. knowYourCG
can also take beta matrices as input to perform feature aggregation over the curated database sets.