The ddPCRclust
algorithm can automatically quantify the CPDs of non-orthogonal ddPCR
reactions with up to four targets. In order to determine the correct droplet count for each target, it is crucial to both identify all clusters and label them correctly based on their position. For more information on what data can be analyzed and how a template needs to be formatted, please check the vignette.
Epialleles are specific DNA methylation patterns that are mitotically and/or meiotically inherited. This package calls and reports cytosine methylation as well as frequencies of hypermethylated epialleles at the level of genomic regions or individual cytosines in next-generation sequencing data using binary alignment map (BAM) files as an input. Among other things, this package can also extract and visualise methylation patterns and assess allele specificity of methylation.
This package facilitates phyloseq exploration and analysis of taxonomic profiling data. This package provides tools for the manipulation, statistical analysis, and visualization of taxonomic profiling data. In addition to targeted case-control studies, microbiome facilitates scalable exploration of population cohorts. This package supports the independent phyloseq data format and expands the available toolkit in order to facilitate the standardization of the analyses and the development of best practices.
Set of functions for analyzing Atomic Force Microscope (AFM) force-distance curves. It allows to obtain the contact and unbinding points, perform the baseline correction, estimate the Young's modulus, fit up to two exponential decay function to a stress-relaxation / creep experiment, obtain adhesion energies. These operations can be done either over a single F-d curve or over a set of F-d curves in batch mode.
This package provides an accessible and robust implementation of core BME methodologies for spatial prediction. It enables the systematic integration of heterogeneous data sources including both hard data (precise measurements) and soft interval data (bounded or uncertain observations) while incorporating prior knowledge and supporting variogram-based spatial modeling. The BME methodology is described in Christakos (1990) <doi:10.1007/BF00890661> and Serre and Christakos (1999) <doi:10.1007/s004770050029>.
Providing a set of functions to easily generate and iterate complex networks. The functions can be used to generate realistic networks with a wide range of different clustering, density, and average path length. For more information consult research articles by Amiyaal Ilany and Erol Akcay (2016) <doi:10.1093/icb/icw068> and Ilany and Erol Akcay (2016) <doi:10.1101/026120>, which have inspired many methods in this package.
This package provides functions for the clustering of variables around Latent Variables, for 2-way or 3-way data. Each cluster of variables, which may be defined as a local or directional cluster, is associated with a latent variable. External variables measured on the same observations or/and additional information on the variables can be taken into account. A "noise" cluster or sparse latent variables can also be defined.
This package provides a general toolkit for drug target identification. We include functionality to reduce large graphs to subgraphs and prioritize nodes. In addition to being optimized for use with generic graphs, we also provides support to analyze protein-protein interactions networks from online repositories. For more details on core method, refer to Weaver et al. (2021) <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008755>.
Synthesizing joint distributions from marginal densities, focusing on controlling key statistical properties such as correlation for continuous data, mutual information for categorical data, and inducing Simpson's Paradox. Generate datasets with specified correlation structures for continuous variables, adjust mutual information between categorical variables, and manipulate subgroup correlations to intentionally create Simpson's Paradox. Joe (1997) <doi:10.1201/b13150> Sklar (1959) <https://en.wikipedia.org/wiki/Sklar%27s_theorem>.
Circumplex models, which organize constructs in a circle around two underlying dimensions, are popular for studying interpersonal functioning, mood/affect, and vocational preferences/environments. This package provides tools for analyzing and visualizing circular data, including scoring functions for relevant instruments and a generalization of the bootstrapped structural summary method from Zimmermann & Wright (2017) <doi:10.1177/1073191115621795> and functions for creating publication-ready tables and figures from the results.
This package provides the necessary functions to identify and extract a selection of already available barcode constructs (Cornils, K. et al. (2014) <doi:10.1093/nar/gku081>) and freely choosable barcode designs from next generation sequence (NGS) data. Furthermore, it offers the possibility to account for sequence errors, the calculation of barcode similarities and provides a variety of visualisation tools (Thielecke, L. et al. (2017) <doi:10.1038/srep43249>).
We provide extensions to the classical dataset "Example 4: Death by the kick of a horse in the Prussian Army" first used by Ladislaus von Bortkeiwicz in his treatise on the Poisson distribution "Das Gesetz der kleinen Zahlen", <DOI:10.1017/S0370164600019453>. As well as an extended time series for the horse-kick death data, we also provide, in parallel, deaths by falling from a horse and by drowning.
This package provides a generalization of the Synth package that is designed for data at a more granular level (e.g., micro-level). Provides functions to construct weights (including propensity score-type weights) and run analyses for synthetic control methods with micro- and meso-level data; see Robbins, Saunders, and Kilmer (2017) <doi:10.1080/01621459.2016.1213634> and Robbins and Davenport (2021) <doi:10.18637/jss.v097.i02>.
This package implements a class ('mcmcOutput
') for efficiently storing and handling Markov chain Monte Carlo (MCMC) output, intended as an aid for those writing customized MCMC samplers. A range of constructor methods are provided covering common output formats. Functions are provided to generate summary and diagnostic statistics and to display histograms or density plots of posterior distributions, for the entire output, or subsets of draws, nodes, or parameters.
This package provides a collection of easy-to-use tools for regression analysis of survival data with a cure fraction proposed in Su et al. (2022) <doi:10.1177/09622802221108579>. The modeling framework is based on the Cox proportional hazards mixture cure model and the bounded cumulative hazard (promotion time cure) model. The pseudo-observations approach is utilized to assess covariate effects and embedded in the variable selection procedure.
This package creates and manages a provenance graph corresponding to the provenance created by the rdtLite
package, which collects provenance from R scripts. rdtLite
is available on CRAN. The provenance format is an extension of the W3C PROV JSON format (<https://www.w3.org/Submission/2013/SUBM-prov-json-20130424/>). The extended JSON provenance format is described in <https://github.com/End-to-end-provenance/ExtendedProvJson>
.
Parametric linkage analysis of monogenic traits in medical pedigrees. Features include singlepoint analysis, multipoint analysis via MERLIN (Abecasis et al. (2002) <doi:10.1038/ng786>), visualisation of log of the odds (LOD) scores and summaries of linkage peaks. Disease models may be specified to accommodate phenocopies, reduced penetrance and liability classes. paramlink2 is part of the pedsuite package ecosystem, presented in Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302).
An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.
Modelling the yield curve with some parametric models. The models implemented are: Nelson, C.R., and A.F. Siegel (1987) <doi: 10.1086/296409>, Diebold, F.X. and Li, C. (2006) <doi: 10.1016/j.jeconom.2005.03.005> and Svensson, L.E. (1994) <doi: 10.3386/w4871>. The package also includes the data of the term structure of interest rate of Federal Reserve Bank and European Central Bank.
JASPAR is an open-access database containing manually curated, non-redundant transcription factor (TF) binding profiles for TFs across six taxonomic groups. In this 9th release, we expanded the CORE collection with 341 new profiles (148 for plants, 101 for vertebrates, 85 for urochordates, and 7 for insects), which corresponds to a 19% expansion over the previous release. To search thisdatabases, please use the package TFBSTools (>= 1.31.2).
The fit.models
function and its associated methods (coefficients, print, summary, plot, etc.) were originally provided in the robust
package to compare robustly and classically fitted model objects. The aim of the fit.models
package is to separate this fitted model object comparison functionality from the robust package and to extend it to support fitting methods (e.g., classical, robust, Bayesian, regularized, etc.) more generally.
This package provides a set of tools for performing graph theory analysis of brain MRI data. It works with data from a Freesurfer analysis (cortical thickness, volumes, local gyrification index, surface area), diffusion tensor tractography data (e.g., from FSL) and resting-state fMRI
data (e.g., from DPABI). It contains a graphical user interface for graph visualization and data exploration, along with several functions for generating useful figures.
This package implements the count splitting methodology from Neufeld et al. (2022) <doi:10.1093/biostatistics/kxac047> and Neufeld et al. (2023) <arXiv:2307.12985>
. Intended for turning a matrix of single-cell RNA sequencing counts, or similar count datasets, into independent folds that can be used for training/testing or cross validation. Assumes that the entries in the matrix are from a Poisson or a negative binomial distribution.
Data recorded as paths or trajectories may be suitably described by curves, which are independent of their parametrization. For the space of such curves, the package provides functionalities for reading curves, sampling points on curves, calculating distance between curves and for computing Tukey curve depth of a curve w.r.t. to a bundle of curves. For details see Lafaye De Micheaux, Mozharovskyi, and Vimond (2019) <arXiv:1901.00180>
.