This package provides functions for kernel-regression-based association tests including Burden test, SKAT and SKAT-O. These methods aggregate individual SNP score statistics in a SNP set and efficiently compute SNP-set level p-values.
This package lets you construct paths to your project's files. Use the here
function as a drop-in replacement for file.path
, it will always locate the files relative to your project root.
Reaver performs a brute force attack against an access point's Wi-Fi Protected Setup (WPS) PIN. Once the PIN is found, the WPA passphrase can be recovered and the AP's wireless settings can be reconfigured.
An implementation of a number of Global Trend models for time series forecasting that are Bayesian generalizations and extensions of some Exponential Smoothing models. The main differences/additions include 1) nonlinear global trend, 2) Student-t error distribution, and 3) a function for the error size, so heteroscedasticity. The methods are particularly useful for short time series. When tested on the well-known M3 dataset, they are able to outperform all classical time series algorithms. The models are fitted with MCMC using the rstan package.
An implementation of EDM algorithms based on research software developed for internal use at the Sugihara Lab ('UCSD/SIO'). The package is implemented with Rcpp wrappers around the cppEDM
library. It implements the simplex projection method from Sugihara & May (1990) <doi:10.1038/344734a0>, the S-map algorithm from Sugihara (1994) <doi:10.1098/rsta.1994.0106>, convergent cross mapping described in Sugihara et al. (2012) <doi:10.1126/science.1227079>, and, multiview embedding described in Ye & Sugihara (2016) <doi:10.1126/science.aag0863>.
This package provides implementations of a classifier based on the "Classification Based on Associations" (CBA). It can be used for building classification models from association rules. Rules are pruned in the order of precedence given by the sort criteria and a default rule is added. The final classifier labels provided instances. CBA was originally proposed by Liu, B. Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. Proceedings KDD-98, New York, 27-31 August. AAAI. pp80-86 (1998, ISBN:1-57735-070-7).
REAPER is a digital audio production application offering multitrack audio and MIDI recording, editing, processing, mixing and mastering toolset. It supports a vast range of hardware, digital formats and plugins, and can be comprehensively extended, scripted and modified.
Retrieve and import data from the INKAR database (Indikatoren und Karten zur Raum- und Stadtentwicklung Datenbank, <https://www.inkar.de>) of the Federal Office for Building and Regional Planning (BBSR) in Bonn using their JSON API.
It submits R code/R scripts/shell commands to LSF cluster (<https://en.wikipedia.org/wiki/Platform_LSF>, the bsub system) without leaving R. There is also an interactive shiny app for monitoring the job status.
Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see <https://cvxopt.org> for more information).
Implementing Function-on-Scalar Regression model in which the response function is dichotomized and observed sparsely. This package provides smooth estimations of functional regression coefficients and principal components for the dichotomized functional response regression (dfrr) model.
Data and miscellanea to support the book "Introduction to Data analysis with R for Forensic Scientists." This book was written by James Curran and published by CRC Press in 2010 (ISBN: 978-1-4200-8826-7).
This package performs a compact genetic algorithm search to reduce errors-in-variables bias in linear regression. The algorithm estimates the regression parameters with lower biases and higher variances but mean-square errors (MSEs) are reduced.
Extracts Exchangeable Image File Format (EXIF) metadata, such as camera make and model, ISO speed and the date-time the picture was taken on, from JPEG images. Incorporates the easyexif (https://github.com/mayanklahiri/easyexif) library.
Analyzes joint attribute data (e.g., species abundance) that are combinations of continuous and discrete data with Gibbs sampling. Full model and computation details are described in Clark et al. (2018) <doi:10.1002/ecm.1241>.
This package provides a case conversion between common cases like CamelCase
and snake_case. Using the rust crate heck <https://github.com/withoutboats/heck> as the backend for a highly performant case conversion for R'.
Utilities to work with data from the Internal Displacement Monitoring Centre (IDMC) (<https://www.internal-displacement.org/>), with convenient functions for loading events data from the IDMC API and transforming events data to daily displacement estimates.
Implementing a computationally scalable false discovery rate control procedure for replicability analysis based on maximum of p-values. Please cite the manuscript corresponding to this package [Lyu, P. et al., (2023), <doi:10.1093/bioinformatics/btad366>].
Estimation of latent class models with individual covariates for capture-recapture data. See Bartolucci, F. and Forcina, A. (2022), Estimating the size of a closed population by modeling latent and observed heterogeneity, Biometrics, 80(2), ujae017.
This package provides a simple in-memory, LRU cache that can be wrapped around any function to memoize it. The cache is keyed on a hash of the input data (using digest') or on pointer equivalence.
Gibbs sampler for fitting multivariate Bayesian linear regression with shrinkage priors (MBSP), using the three parameter beta normal family. The method is described in Bai and Ghosh (2018) <doi:10.1016/j.jmva.2018.04.010>.
Allows users to conduct multivariate distance matrix regression using analytic p-values and compute measures of effect size. For details on the method, see McArtor
, Lubke, & Bergeman (2017) <doi:10.1007/s11336-016-9527-8>.
Counting process structure is fundamental to model time varying covariates. This package restructures dataframes in the counting process format for one or more variables. F. W. Dekker, et al. (2008) <doi:10.1038/ki.2008.328>.
Several functions can be used to analyze neuroimaging data using multivariate methods based on the msma package. The functions used in the book entitled "Multivariate Analysis for Neuroimaging Data" (2021, ISBN-13: 978-0367255329) are contained.