This package enables you to read and manipulate genome intervals and signals. It provides functionality similar to command-line tool suites within R, enabling interactive analysis and visualization of genome-scale data.
This package provides a simple HTTP client, with tools for making HTTP requests, and mocking HTTP requests. The package is built on R6, and takes inspiration from Ruby's faraday
gem.
This package provides an easy and simple way to read, write and display bitmap images stored in the TIFF format. It can read and write both files and in-memory raw vectors.
This package supports twin models that are able to estimate the dynamic behaviour of the variance components in the classical twin models with respect to age using B-splines and P-splines.
This package provides functions for summarizing and plotting the output from Markov Chain Monte Carlo (MCMC) simulations, as well as diagnostic tests of convergence to the equilibrium distribution of the Markov chain.
Handle climate data from the DWD ('Deutscher Wetterdienst', see <https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html> for more information). Choose observational time series from meteorological stations with selectDWD()
'. Find raster data from radar and interpolation according to <https://bookdown.org/brry/rdwd/raster-data.html>. Download (multiple) data sets with progress bars and no re-downloads through dataDWD()
'. Read both tabular observational data and binary gridded datasets with readDWD()
'.
Test Statistics for Independence in High-Dimensional Datasets. This package consists of two functions to perform the complete independence test based on test statistics proposed by Bulut (unpublished yet) and suggested by Najarzadeh (2021) <doi: 10.1080/03610926.2019.1702699>. The Bulut's statistic is not sensitive to outliers in high-dimensional data, unlike one of Najarzadeh (2021) <doi: 10.1080/03610926.2019.1702699>. So, the Bulut's statistic can be performed robustly by using RDnp function.
Detects copy number alteration events in targeted exon sequencing data for tumor samples without matched normal controls. The advantage of this method is that it can be applied to smaller sequencing panels including evaluations of exon, transcript, gene, or even user specified genetic regions of interest. Functions in the package include steps for GC-content correction, calculation of quantile based normal karyotype ranges, and calculation of feature score. Cutoffs for "normal" quantile and score are user-adjustable.
This package provides a model of single-layer groundwater flow in steady-state under the Dupuit-Forchheimer assumption can be created by placing elements such as wells, area-sinks and line-sinks at arbitrary locations in the flow field. Output variables include hydraulic head and the discharge vector. Particle traces can be computed numerically in three dimensions. The underlying theory is described in Haitjema (1995) <doi:10.1016/B978-0-12-316550-3.X5000-4> and references therein.
This package provides reference classes implementing some useful data structures. The package implements these data structures by using the reference class R6. Therefore, the classes of the data structures are also reference classes which means that their instances are passed by reference. The implemented data structures include stack, queue, double-ended queue, doubly linked list, set, dictionary and binary search tree. See for example <https://en.wikipedia.org/wiki/Data_structure> for more information about the data structures.
SEA performs simultaneous feature-set testing for (gen)omics data. It tests the unified null hypothesis and controls the family-wise error rate for all possible pathways. The unified null hypothesis is defined as: "The proportion of true features in the set is less than or equal to a threshold." Family-wise error rate control is provided through use of closed testing with Simes test. There are some practical functions to play around with the pathways of interest.
By placing on a circle 10 points numbered from 1 to 10, and connecting them by a straight line to the point corresponding to its multiplication by 2. (1 must be connected to 1 * 2 = 2, point 2 must be set to 2 * 2 = 4, point 3 to 3 * 2 = 6 and so on). You will obtain an amazing geometric figure that complicates and beautifies itself by varying the number of points and the multiplication table you use.
Existing adaptive design methods in clinical trials. The package includes power, stopping boundaries (sample size) calculation functions for two-group group sequential designs, adaptive design with coprimary endpoints, biomarker-informed adaptive design, etc.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2408.10558>
, and allows for the statistical modeling of multi-attribute pairwise comparison data.
The Chinese ID number contains a lot of information, this package helps you get the region, date of birth, age, age based on year, gender, zodiac, constellation information from the Chinese ID number.
This package provides a set of user-friendly wrapper functions for creating consistent graphics and diagrams with lines, common shapes, text, and page settings. Compatible with and based on the R grid package.
Empirical likelihood ratio tests for the Yang and Prentice (short/long term hazards ratio) models. Empirical likelihood tests within a Cox model, for parameters defined via both baseline hazard function and regression parameters.
Provide the EMU Speech Database Management System (EMU-SDMS) with database management, data extraction, data preparation and data visualization facilities. See <https://ips-lmu.github.io/The-EMU-SDMS-Manual/> for more details.
This package implements the fused lasso additive model as proposed in Petersen, A., Witten, D., and Simon, N. (2016). Fused Lasso Additive Model. Journal of Computational and Graphical Statistics, 25(4): 1005-1025.
Allows for easy creation of diagnostic plots for a variety of model objects using the Grammar of Graphics. Provides functionality for both individual diagnostic plots and an array of four standard diagnostic plots.
Fits regression models on high dimensional data to estimate coefficients and use bootstrap method to obtain confidence intervals. Choices for regression models are Lasso, Lasso+OLS, Lasso partial ridge, Lasso+OLS partial ridge.
Hadoop InteractiVE
facilitates distributed computing via the MapReduce
paradigm through R and Hadoop. An easy to use interface to Hadoop, the Hadoop Distributed File System (HDFS), and Hadoop Streaming is provided.
We provide data sets used in the forthcoming textbook "Introduction to Sports Analytics using R" by Elmore and Urbaczweski (2024). The package currently contains sixteen datasets and should be published in early 2024.
This package provides functions and data to reproduce all plots in the book "Practical Smoothing. The Joys of P-splines" by Paul H.C. Eilers and Brian D. Marx (2021, ISBN:978-1108482950).