This package performs support vectors analysis for data sets with survival outcome. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in the same model.
Asio is a cross-platform C++ library for network and low-level I/O programming that provides developers with a consistent asynchronous model using a modern C++ approach. It is also included in Boost but requires linking when used with Boost. Standalone it can be used header-only (provided a recent compiler). Asio is written and maintained by Christopher M. Kohlhoff, and released under the Boost Software License', Version 1.0.
An approach to filter out and/or identify phytoplankton cells from all particles measured via flow cytometry pigment and cell complexity information. It does this using a sequence of one-dimensional gates on pre-defined channels measuring certain pigmentation and complexity. The package is especially tuned for cyanobacteria, but will work fine for phytoplankton communities where there is at least one cell characteristic that differentiates every phytoplankton in the community.
This R package helps the user identify k-mers (e.g. di- or tri-nucleotides) present periodically in a set of genomic loci (typically regulatory elements). The functions of this package provide a straightforward approach to find periodic occurrences of k-mers in DNA sequences, such as regulatory elements. It is not aimed at identifying motifs separated by a conserved distance; for this type of analysis, please visit MEME website.
Tracking accrual in clinical trials is important for trial success. If accrual is too slow, the trial will take too long and be too expensive. If accrual is much faster than expected, time sensitive tasks such as the writing of statistical analysis plans might need to be rushed. accrualPlot provides functions to aid the tracking of accrual and predict when a trial will reach it's intended sample size.
Israeli baby names provided by Israel's Central Bureau of Statistics. The package contains only names used for at least 5 children in at least one gender and sector ("Jewish", "Muslim", "Christian", "Druze" and "Other"). Data was downloaded from: <https://www.cbs.gov.il/he/publications/LochutTlushim/2020/%D7%A9%D7%9E%D7%95%D7%AA-%D7%A4%D7%A8%D7%98%D7%99%D7%99%D7%9D.xlsx>.
An implementation of several functions for feature extraction in categorical time series datasets. Specifically, some features related to marginal distributions and serial dependence patterns can be computed. These features can be used to feed clustering and classification algorithms for categorical time series, among others. The package also includes some interesting datasets containing biological sequences. Practitioners from a broad variety of fields could benefit from the general framework provided by ctsfeatures'.
Offers various swiss maps as data frames and ggplot2 objects and gives the possibility to add layers of data on the maps. Data are publicly available from the swiss federal statistical office. In addition to the \codemaps2 object (a list of 8 swiss maps, at various levels), there are the data frames with the boundaries used to produce these maps (\codeshp_df, a list with 8 data frames).
The gasanalyzer R package offers methods for importing, preprocessing, and analyzing data related to photosynthetic characteristics (gas exchange, chlorophyll fluorescence and isotope ratios). It translates variable names into a standard format, and can recalculate derived, physiological quantities using imported or predefined equations. The package also allows users to assess the sensitivity of their results to different assumptions used in the calculations. See also Tholen (2024) <doi:10.1093/aobpla/plae035>.
This package provides a latent variable model based on factor analytic and mixture of experts models, designed to infer food intake from multiple biomarkers data. The model is framed within a Bayesian hierarchical framework, which provides flexibility to adapt to different biomarker distributions and facilitates inference on food intake from biomarker data alone, along with the associated uncertainty. Details are in D'Angelo, et al. (2020) <arXiv:2006.02995>.
This package provides matrix Gaussian mixture models, matrix transformation mixture models and their model-based clustering results. The parsimonious models of the mean matrices and variance covariance matrices are implemented with a total of 196 variations. For more information, please check: Xuwen Zhu, Shuchismita Sarkar, and Volodymyr Melnykov (2021), "MatTransMix: an R package for matrix model-based clustering and parsimonious mixture modeling", <doi:10.1007/s00357-021-09401-9>.
Analyze repertory grids, a qualitative-quantitative data collection technique devised by George A. Kelly in the 1950s. Today, grids are used across various domains ranging from clinical psychology to marketing. The package contains functions to quantitatively analyze and visualize repertory grid data (e.g. Fransella', Bell', & Bannister', 2004, ISBN: 978-0-470-09080-0). The package is part of the The package is part of the <https://openrepgrid.org/> project.
This package provides a probability tree allows to compute probabilities of complex events, such as genotype probabilities in intermediate generations of inbreeding through recurrent self-fertilization (selfing). This package implements functionality to compute probability trees for two- and three-marker genotypes in the F2 to F7 selfing generations. The conditional probabilities are derived automatically and in symbolic form. The package also provides functionality to extract and evaluate the relevant probabilities.
An implementation of the selectboost algorithm (Bertrand et al. 2020, Bioinformatics', <doi:10.1093/bioinformatics/btaa855>), which is a general algorithm that improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.
This package implements inverse and augmented inverse probability weighted estimators for common treatment effect parameters at an interim analysis with time-lagged outcome that may not be available for all enrolled subjects. Produces estimators, standard errors, and information that can be used to compute stopping boundaries using software that assumes that the estimators/test statistics have independent increments. Tsiatis, A. A. and Davidian, M., (2022) <doi:10.1002/sim.9580> .
Rofi-pass provides a way to manipulate information stored using password-store through rofi interface:
open URLs of entries with hotkey;
type any field from entry;
auto-typing of user and/or password fields;
auto-typing username based on path;
auto-typing of more than one field, using the autotype entry;
bookmarks mode (open stored URLs in browser, default: Alt+x).
This package provides utilities for computing measures to assess model quality, which are not directly provided by R's base or stats packages. These include e.g. measures like r-squared, intraclass correlation coefficient, root mean squared error or functions to check models for overdispersion, singularity or zero-inflation and more. Functions apply to a large variety of regression models, including generalized linear models, mixed effects models and Bayesian models.
The bundle provides four packages:
rubikcubeprovides commands for typesetting Rubik cubes and their transformations,rubiktwocubeprovides commands for typesetting Rubik twocubes and their transformations,rubikrotationcan process a sequence of Rubik rotation moves, with the help of a Perl package executed via\write18(shell escape) commands,rubikpatternsis a collection of well known patterns and their associated rotation sequences.
Developer oriented utility functions designed to be used as the building blocks of R packages that work with ArcGIS Location Services. It provides functionality for authorization, Esri JSON construction and parsing, as well as other utilities pertaining to geometry and Esri type conversions. To support ArcGIS Pro users, authorization can be done via arcgisbinding'. Installation instructions for arcgisbinding can be found at <https://developers.arcgis.com/r-bridge/installation/>.
This package provides tools for constructing a matched design with multiple comparison groups. Further specifications of refined covariate balance restriction and exact match on covariate can be imposed. Matches are approximately optimal in the sense that the cost of the solution is at most twice the optimal cost, Crama and Spieksma (1992) <doi:10.1016/0377-2217(92)90078-N>, Karmakar, Small and Rosenbaum (2019) <doi:10.1080/10618600.2019.1584900>.
The company, Algorithmia, houses the largest marketplace of online algorithms. This package essentially holds a bunch of REST wrappers that make it very easy to call algorithms in the Algorithmia platform and access files and directories in the Algorithmia data API. To learn more about the services they offer and the algorithms in the platform visit <http://algorithmia.com>. More information for developers can be found at <https://algorithmia.com/developers>.
Generate ground truth cases for object localization algorithms. Cycle through a list of images, select points around which to generate bounding boxes and assign classifiers. Output the coordinates, and images annotated with boxes and labels. For an example study that uses bounding boxes for image localization and classification see Ibrahim, Badr, Abdallah, and Eissa (2012) "Bounding Box Object Localization Based on Image Superpixelization" <doi:10.1016/j.procs.2012.09.119>.
It fits linear regression models for censored spatial data. It provides different estimation methods as the SAEM (Stochastic Approximation of Expectation Maximization) algorithm and seminaive that uses Kriging prediction to estimate the response at censored locations and predict new values at unknown locations. It also offers graphical tools for assessing the fitted model. More details can be found in Ordonez et al. (2018) <doi:10.1016/j.spasta.2017.12.001>.
This package provides tools for fitting Bayesian Distributed Lag Models (DLMs) to longitudinal response data that is a count or binary. Count data is fit using negative binomial regression and binary is fit using quantile regression. The contribution of the lags are fit via b-splines. In addition, infers the predictor inclusion uncertainty. Multimomial models are not supported. Based on Dempsey and Wyse (2025) <doi:10.48550/arXiv.2403.03646>.