_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-plsrcox 1.7.7
Propagated dependencies: r-survival@3.7-0 r-survcomp@1.56.0 r-survauc@1.3-0 r-rms@6.8-2 r-risksetroc@1.0.4.1 r-plsrglm@1.5.1 r-pls@2.8-5 r-mixomics@6.30.0 r-lars@1.3 r-kernlab@0.9-33
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: http://fbertran.github.io/plsRcox/
Licenses: GPL 3
Synopsis: Partial Least Squares Regression for Cox Models and Related Techniques
Description:

This package provides Partial least squares Regression and various regular, sparse or kernel, techniques for fitting Cox models in high dimensional settings <doi:10.1093/bioinformatics/btu660>, Bastien, P., Bertrand, F., Meyer N., Maumy-Bertrand, M. (2015), Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Bioinformatics, 31(3):397-404. Cross validation criteria were studied in <arXiv:1810.02962>, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), Cross validating extensions of kernel, sparse or regular partial least squares regression models to censored data.

Total results: 1