_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-rminer 1.5.0
Propagated dependencies: r-xgboost@1.7.11.1 r-rpart@4.1.24 r-randomforest@4.7-1.2 r-pls@2.8-5 r-plotrix@3.8-13 r-party@1.3-18 r-nnet@7.3-20 r-mda@0.5-5 r-mass@7.3-65 r-lattice@0.22-7 r-kknn@1.4.1 r-kernlab@0.9-33 r-glmnet@4.1-10 r-e1071@1.7-16 r-cubist@0.5.1 r-adabag@5.1
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=rminer
Licenses: GPL 2
Synopsis: Machine Learning Classification and Regression Methods
Description:

Facilitates the use of machine learning algorithms in classification and regression (including time series forecasting) tasks by presenting a short and coherent set of functions. Versions: 1.5.0 improved mparheuristic function (new hyperparameter heuristics); 1.4.9 / 1.4.8 improved help, several warning and error code fixes (more stable version, all examples run correctly); 1.4.7 - improved Importance function and examples, minor error fixes; 1.4.6 / 1.4.5 / 1.4.4 new automated machine learning (AutoML) and ensembles, via improved fit(), mining() and mparheuristic() functions, and new categorical preprocessing, via improved delevels() function; 1.4.3 new metrics (e.g., macro precision, explained variance), new "lssvm" model and improved mparheuristic() function; 1.4.2 new "NMAE" metric, "xgboost" and "cv.glmnet" models (16 classification and 18 regression models); 1.4.1 new tutorial and more robust version; 1.4 - new classification and regression models, with a total of 14 classification and 15 regression methods, including: Decision Trees, Neural Networks, Support Vector Machines, Random Forests, Bagging and Boosting; 1.3 and 1.3.1 - new classification and regression metrics; 1.2 - new input importance methods via improved Importance() function; 1.0 - first version.

Total results: 1