Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a package for the assessment and comparison of the performance of risk prediction (survival) models.
This package provides a set of tools to for machine and deep learning in R from amino acid and nucleotide sequences focusing on adaptive immune receptors. The package includes pre-processing of sequences, unifying gene nomenclature usage, encoding sequences, and combining models. This package will serve as the basis of future immune receptor sequence functions/packages/models compatible with the scRepertoire ecosystem.
This is a package for detection of differentially bound regions in ChIP-seq data with sliding windows, with methods for normalization and proper FDR control.
This package provides a visual and interactive web application using RStudio's shiny package. Bad quality samples are detected using sample-dependent and sample-independent controls present on the array and user adjustable thresholds. In depth exploration of bad quality samples can be performed using several interactive diagnostic plots of the quality control probes present on the array. Furthermore, the impact of any batch effect provided by the user can be explored.
This package ADAMgui is a graphical user interface (GUI) for the ADAM package. The ADAMgui package provides two shiny-based applications that allows the user to study the output of the ADAM package files through different plots. It's possible, for example, to choose a specific group of functionally associated genes (GFAG) and observe the gene expression behavior with the plots created with the GFAGtargetUi function. Features such as differential expression and fold change can be easily seen with aid of the plots made with the GFAGpathUi function.
This is a package for segmentation of allele-specific DNA copy number data and detection of regions with abnormal copy number within each parental chromosome. Both tumor-normal paired and tumor-only analyses are supported.
This package provides a one-to-one mapping from gene to "best" probe set for four Affymetrix human gene expression microarrays: hgu95av2, hgu133a, hgu133plus2, and u133x3p. On Affymetrix gene expression microarrays, a single gene may be measured by multiple probe sets. This can present a mild conundrum when attempting to evaluate a gene "signature" that is defined by gene names rather than by specific probe sets. This package also includes the pre-calculated probe set quality scores that were used to define the mapping.
ChIPComp implements a statistical method for quantitative comparison of multiple ChIP-seq datasets. It detects differentially bound sharp binding sites across multiple conditions considering matching control in ChIP-seq datasets.
This package implements methods to remove unwanted variation (RUV) of Risso et al. (2014) for the normalization of RNA-Seq read counts between samples.
This package provides a collection of reference expression datasets with curated cell type labels, for use in procedures like automated annotation of single-cell data or deconvolution of bulk RNA-seq.
This package is designed to ease the application and comparison of multiple hypothesis testing procedures for FWER, gFWER, FDR and FDX. Methods are standardized and usable by the accompanying mutossGUI package.
This package provides fully Bayesian mixture models for differential gene expression.
This package provides a data-driven test for the assumptions of quantile normalization using raw data such as objects that inherit eSets (e.g. ExpressionSet, MethylSet). Group level information about each sample (such as Tumor / Normal status) must also be provided because the test assesses if there are global differences in the distributions between the user-defined groups.
This package provides a set of low-level utilities to retrieve data from the UCSC Genome Browser. Most functions in the package access the data via the UCSC REST API but some of them query the UCSC MySQL server directly. Note that the primary purpose of the package is to support higher-level functionalities implemented in downstream packages like GenomeInfoDb or txdbmaker.
This package performs hybrid multiple testing that incorporates method selection and assumption evaluations into the analysis using EBP estimates obtained by Grenander density estimation. For instance, for 3-group comparison analysis, Hybrid Multiple testing considers EBPs as weighted EBPs between F-test and H-test with EBPs from Shapiro Wilk test of normality as weight. Instead of just using EBPs from F-test only or using H-test only, this methodology combines both types of EBPs through EBPs from Shapiro Wilk test of normality. This methodology uses then the law of total EBPs.
UCell is a package for evaluating gene signatures in single-cell datasets. UCell signature scores, based on the Mann-Whitney U statistic, are robust to dataset size and heterogeneity, and their calculation demands less computing time and memory than other available methods, enabling the processing of large datasets in a few minutes even on machines with limited computing power. UCell can be applied to any single-cell data matrix, and includes functions to directly interact with SingleCellExperiment and Seurat objects.
This package defines an S4 class for storing data from single-cell experiments. This includes specialized methods to store and retrieve spike-in information, dimensionality reduction coordinates and size factors for each cell, along with the usual metadata for genes and libraries.
This package is to find SNV/Indel differences between two bam files with near relationship in a way of pairwise comparison through each base position across the genome region of interest. The difference is inferred by Fisher test and euclidean distance, the input of which is the base count (A,T,G,C) in a given position and read counts for indels that span no less than 2bp on both sides of indel region.
This package provides code for generating Annotation packages and their databases. Packages produced are intended to be used with AnnotationDbi.
This package provides tools to import transcript-level abundance, estimated counts and transcript lengths, and to summarize them into matrices for use with downstream gene-level analysis packages. Average transcript length, weighted by sample-specific transcript abundance estimates, is provided as a matrix which can be used as an offset for different expression of gene-level counts.
This package provides a framework for the quantification and analysis of short genomic reads. It covers a complete workflow starting from raw sequence reads, over creation of alignments and quality control plots, to the quantification of genomic regions of interest.
This package provides a package for RNA basepair analysis, including the visualization of basepairs as arc diagrams for easy comparison and annotation of sequence and structure. Arc diagrams can additionally be projected onto multiple sequence alignments to assess basepair conservation and covariation, with numerical methods for computing statistics for each.
This package provides tools for large-scale identification and advanced visualization of sets of conserved noncoding elements.
BASiCS is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori. BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells.