Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The HiTC package was developed to explore high-throughput "C" data such as 5C or Hi-C. Dedicated R classes as well as standard methods for quality controls, normalization, visualization, and further analysis are also provided.
This package provides genome wide annotation for E coli strain K12, primarily based on mapping using Entrez Gene identifiers. Entrez Gene is National Center for Biotechnology Information (NCBI)’s database for gene-specific information. Entrez Gene maintains records from genomes which have been completely sequenced, which have an active research community to submit gene-specific information, or which are scheduled for intense sequence analysis.
The Structstrings package implements the widely used dot bracket annotation for storing base pairing information in structured RNA. Structstrings uses the infrastructure provided by the Biostrings package and derives the DotBracketString and related classes from the BString class. From these, base pair tables can be produced for in depth analysis. In addition, the loop indices of the base pairs can be retrieved as well. For better efficiency, information conversion is implemented in C, inspired to a large extend by the ViennaRNA package.
This package provides infrastructure to store and access genome-wide position-specific scores within R and Bioconductor.
This package uses the source code of zlib-1.2.5 to create libraries for systems that do not have these available via other means.
This package provides user interface and database connection code for annotation data packages using SQLite data storage.
This package infers and discriminates RIP peaks from RIP-seq alignments using two-state HMM with negative binomial emission probability. While RIPSeeker is specifically tailored for RIP-seq data analysis, it also provides a suite of bioinformatics tools integrated within this self-contained software package comprehensively addressing issues ranging from post-alignments processing to visualization and annotation.
This is a manifest package for Illumina's EPIC methylation arrays.
This package provides memory efficient string containers, string matching algorithms, and other utilities, for fast manipulation of large biological sequences or sets of sequences.
MethylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from Reduced representation bisulfite sequencing (RRBS) and its variants, but also target-capture methods and whole genome bisulfite sequencing. It also has functions to analyze base-pair resolution 5hmC data from experimental protocols such as oxBS-Seq and TAB-Seq.
The airpart package identifies sets of genes displaying differential cell-type-specific allelic imbalance across cell types or states, utilizing single-cell allelic counts. It makes use of a generalized fused lasso with binomial observations of allelic counts to partition cell types by their allelic imbalance. Alternatively, a nonparametric method for partitioning cell types is offered. The package includes a number of visualizations and quality control functions for examining single cell allelic imbalance datasets.
Bayesian network analysis is a form of probabilistic graphical models which derives from empirical data a directed acyclic graph, DAG, describing the dependency structure between random variables. An additive Bayesian network model consists of a form of a DAG where each node comprises a generalized linear model (GLM). Additive Bayesian network models are equivalent to Bayesian multivariate regression using graphical modelling, they generalises the usual multivariable regression, GLM, to multiple dependent variables. This package provides routines to help determine optimal Bayesian network models for a given data set, where these models are used to identify statistical dependencies in messy, complex data.
This package provides functionality for the compression and decompression of raw bead-level data from the Illumina BeadArray platform.
This package provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.
This software ADAM is a Gene set enrichment analysis (GSEA) package created to group a set of genes from comparative samples (control versus experiment) belonging to different species according to their respective functions. The corresponding roles are extracted from the default collections like Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG). ADAM show their significance by calculating the p-values referring to gene diversity and activity. Each group of genes is called Group of functionally associated genes (GFAG).
This is an annotation package for Illumina's EPIC v2.0 methylation arrays. The version 2 covers more than 935K CpG sites in the human genome hg38. It is an update of the original EPIC v1.0 array (i.e., the 850K methylation array).
Fit-Hi-C is a tool for assigning statistical confidence estimates to intra-chromosomal contact maps produced by genome-wide genome architecture assays such as Hi-C.
Cicero computes putative cis-regulatory maps from single-cell chromatin accessibility data. It also extends the monocle package for use in chromatin accessibility data.
Single-cell RNA-seq (scRNA-seq) is widely used to investigate the composition of complex tissues since the technology allows researchers to define cell-types using unsupervised clustering of the transcriptome. However, due to differences in experimental methods and computational analyses, it is often challenging to directly compare the cells identified in two different experiments. scmap is a method for projecting cells from a scRNA-seq experiment onto the cell-types or individual cells identified in a different experiment.
This package is designed to facilitate the automated gating methods in a sequential way to mimic the manual gating strategy.
This package provides functions and datasets for maximum likelihood fitting of some classes of graphical Markov models.
This is a package for creating na HTML report of differential expression analyses of count data. It integrates some of the code mentioned in DESeq2 and edgeR vignettes, and report a ranked list of genes according to the fold changes mean and variability for each selected gene.
This package implements an expiration system for access to versioned directories. Directories that have not been accessed by a registered function within a certain time frame are deleted. This aims to reduce disk usage by eliminating obsolete caches generated by old versions of packages.
This package can do non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled, quantile-transformed). Single-step and step-wise methods are available. Tests based on a variety of T- and F-statistics (including T-statistics based on regression parameters from linear and survival models as well as those based on correlation parameters) are included. When probing hypotheses with T-statistics, users may also select a potentially faster null distribution which is multivariate normal with mean zero and variance covariance matrix derived from the vector influence function. Results are reported in terms of adjusted P-values, confidence regions and test statistic cutoffs. The procedures are directly applicable to identifying differentially expressed genes in DNA microarray experiments.