Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Managing data from large scale projects such as The Cancer Genome Atlas (TCGA) for further analysis is an important and time consuming step for research projects. Several efforts, such as Firehose project, make TCGA pre-processed data publicly available via web services and data portals but it requires managing, downloading and preparing the data for following steps. This package provides an extensible R based data client for Firehose pre-processed data.
This package implements a general and flexible zero-inflated negative binomial model that can be used to provide a low-dimensional representations of single-cell RNA-seq data. The model accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data. The model also accounts for the difference in library sizes and optionally for batch effects and/or other covariates, avoiding the need for pre-normalize the data.
This package provides functions to estimate a bipartite graph of protein complex membership using AP-MS data.
This is a package for saving matrices, arrays and similar objects into file artifacts, and loading them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
This is a package for Differential Expression Analysis of RNA-seq data. It features a variance component score test accounting for data heteroscedasticity through precision weights. Perform both gene-wise and gene set analyses, and can deal with repeated or longitudinal data.
This package stores all schemas required by various alabaster.* packages. No computation should be performed by this package, as that is handled by alabaster.base.
The polyester package simulates RNA-seq reads from differential expression experiments with replicates. The reads can then be aligned and used to perform comparisons of methods for differential expression.
AgiMicroRna provides useful functionality for the processing, quality assessment and differential expression analysis of Agilent microRNA array data. The package uses a limma-like structure to generate the processed data in order to make statistical inferences about differential expression using the linear model features implemented in limma. Standard Bioconductor objects are used so that other packages could be used as well.
The MsFeature package defines functionality for Mass Spectrometry features. This includes functions to group (LC-MS) features based on some of their properties, such as retention time (coeluting features), or correlation of signals across samples. This package hence can be used to group features, and its results can be used as an input for the QFeatures package which allows aggregating abundance levels of features within each group. This package defines concepts and functions for base and common data types, implementations for more specific data types are expected to be implemented in the respective packages (such as e.g. xcms).
r-pathview is a tool set for pathway based data integration and visualization. It maps and renders a wide variety of biological data on relevant pathway graphs. All users need is to supply their data and specify the target pathway. This package automatically downloads the pathway graph data, parses the data file, maps user data to the pathway, and render pathway graph with the mapped data. In addition, r-pathview also seamlessly integrates with pathway and gene set (enrichment) analysis tools for large-scale and fully automated analysis.
In this package, a Hidden Semi Markov Model (HSMM) and one homogeneous segmentation model are designed and implemented for segmentation genomic data, with the aim of assisting in transcripts detection using high throughput technology like RNA-seq or tiling array, and copy number analysis using aCGH or sequencing.
This package models a RESTful service as if it were a nested R list.
This package offers functions to process multiple ChIP-seq BAM files and detect allele-specific events. It computes allele counts at individual variants (SNPs/SNVs), implements extensive QC (quality control) steps to remove problematic variants, and utilizes a Bayesian framework to identify statistically significant allele-specific events. BaalChIP is able to account for copy number differences between the two alleles, a known phenotypical feature of cancer samples.
This package provides a pure data-driven gene network, WGCN(weighted gene co-expression network) could be constructed only from expression profile. Different layers in such networks may represent different time points, multiple conditions or various species. AMOUNTAIN aims to search active modules in multi-layer WGCN using a continuous optimization approach.
BiFET identifies transcription factors (TFs) whose footprints are over-represented in target regions compared to background regions after correcting for the bias arising from the imbalance in read counts and GC contents between the target and background regions. For a given TF k, BiFET tests the null hypothesis that the target regions have the same probability of having footprints for the TF k as the background regions while correcting for the read count and GC content bias.
This package provides basic functions for filtering genes from high-throughput sequencing experiments.
Filter genetic variants using different criteria such as inheritance model, amino acid change consequence, minor allele frequencies across human populations, splice site strength, conservation, etc.
This package offers interactive Shiny displays for Bioconductor objects. In addition, this package empowers users to develop engaging visualizations and interfaces for working with Bioconductor data.
This package analyzes and creates plots of array CGH data. Also, it allows usage of CBS, wavelet-based smoothing, HMM, BioHMM, GLAD, CGHseg. Most computations are parallelized (either via forking or with clusters, including MPI and sockets clusters) and use ff for storing data.
This package provides SNP locations and alleles for Homo sapiens extracted from NCBI dbSNP Build 144. The source data files used for this package were created by NCBI on May 29-30, 2015, and contain SNPs mapped to reference genome GRCh37.p13. Note that the GRCh37.p13 genome is a patched version of GRCh37. However the patch doesn't alter chromosomes 1-22, X, Y, MT. GRCh37 itself is the same as the hg19 genome from UCSC *except* for the mitochondrion chromosome. Therefore, the SNPs in this package can be injected in BSgenome.Hsapiens.UCSC.hg19 and they will land at the correct position but this injection will exclude chrM (i.e. nothing will be injected in that sequence).
DEComplexDisease is designed to find the DEGs for complex disease, which is characterized by the heterogeneous genomic expression profiles. Different from the established DEG analysis tools, it does not assume the patients of complex diseases to share the common DEGs. By applying a bi-clustering algorithm, DEComplexDisease finds the DEGs shared by as many patients. Applying the DEComplexDisease analysis results, users are possible to find the patients affected by the same mechanism based on the shared signatures.
This package provides tools for the identification of differentially expressed genes and estimation of the False Discovery Rate (FDR) using both the Significance Analysis of Microarrays (SAM) and the Empirical Bayes Analyses of Microarrays (EBAM).
This package contains an implementation of AIMS -- Absolute Intrinsic Molecular Subtyping. It contains necessary functions to assign the five intrinsic molecular subtypes (Luminal A, Luminal B, Her2-enriched, Basal-like, Normal-like). Assignments could be done on individual samples as well as on dataset of gene expression data.
Representing nucleotide modifications in a nucleotide sequence is usually done via special characters from a number of sources. This represents a challenge to work with in R and the Biostrings package. The Modstrings package implements this functionality for RNA and DNA sequences containing modified nucleotides by translating the character internally in order to work with the infrastructure of the Biostrings package. For this the ModRNAString and ModDNAString classes and derivates and functions to construct and modify these objects despite the encoding issues are implemenented. In addition the conversion from sequences to list like location information (and the reverse operation) is implemented as well.