Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides the analysis methods fourthcorner and RLQ analysis for large-scale transcriptomic data.
An upgraded causal reasoning tool from Melas et al in R with updated assignments of TFs weights from PROGENy scores. Optimization parameters can be freely adjusted and multiple solutions can be obtained and aggregated.
This package provides a curated dataset of RNA-Seq samples. The samples are MDI-induced pre-phagocytes (3T3-L1) at different time points/stage of differentiation. The package document the data collection, pre-processing and processing. In addition to the documentation, the package contains the scripts that was used to generated the data.
This package provides a general framework for the simulation of ChIP-seq data. Although currently focused on nucleosome positioning the package is designed to support different types of experiments.
This package provides a support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.
Fast and efficient reading and writing of mass spectrometry imaging data files. Supports imzML and Analyze 7.5 formats. Provides ontologies for mass spectrometry imaging.
The crisprVerse is a modular ecosystem of R packages developed for the design and manipulation of CRISPR guide RNAs (gRNAs). All packages share a common language and design principles. This package is designed to make it easy to install and load the crisprVerse packages in a single step. To learn more about the crisprVerse, visit <https://www.github.com/crisprVerse>.
Coordinated Gene Activity in Pattern Sets (CoGAPS) implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis.
Co-expression analysis for expression profiles arising from high-throughput sequencing data. Feature (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-means algorithm, and model selection criteria (to choose an appropriate number of clusters) are provided.
Strand specific peak-pair calling in ChIP-exo replicates. The cumulative Skellam distribution function is used to detect significant normalised count differences of opposed sign at each DNA strand (peak-pairs). Then, irreproducible discovery rate for overlapping peak-pairs across biological replicates is computed.
Gene Set Enrichment Analysis of P-value based statistics for outlier gene detection in dataset merged from multiple studies.
This package implements statistical & computational tools for analyzing mass spectrometry imaging datasets, including methods for efficient pre-processing, spatial segmentation, and classification.
Affymetrix Affymetrix Celegans Array annotation data (chip celegans) assembled using data from public repositories.
The classification protocol starts with a feature selection step and continues with nearest-centroid classification. The accurarcy of the predictor can be evaluated using training and test set validation, leave-one-out cross-validation or in a multiple random validation protocol. Methods for calculation and visualization of continuous prediction scores allow to balance sensitivity and specificity and define a cutoff value according to clinical requirements.
This package provides a package containing an environment representing the Citrus.cdf file.
This package is for analysis of SILAC labeled complexome profiling data. It uses peptide table in tab-delimited format as an input and produces ready-to-use tables and plots.
Clomial fits binomial distributions to counts obtained from Next Gen Sequencing data of multiple samples of the same tumor. The trained parameters can be interpreted to infer the clonal structure of the tumor.
This package provides the necessary functions for performing the Partial Correlation coefficient with Information Theory (PCIT) (Reverter and Chan 2008) and Regulatory Impact Factors (RIF) (Reverter et al. 2010) algorithm. The PCIT algorithm identifies meaningful correlations to define edges in a weighted network and can be applied to any correlation-based network including but not limited to gene co-expression networks, while the RIF algorithm identify critical Transcription Factors (TF) from gene expression data. These two algorithms when combined provide a very relevant layer of information for gene expression studies (Microarray, RNA-seq and single-cell RNA-seq data).
ChIPanalyser is a package to predict and understand TF binding by utilizing a statistical thermodynamic model. The model incorporates 4 main factors thought to drive TF binding: Chromatin State, Binding energy, Number of bound molecules and a scaling factor modulating TF binding affinity. Taken together, ChIPanalyser produces ChIP-like profiles that closely mimic the patterns seens in real ChIP-seq data.
The CLL package contains the chronic lymphocytic leukemia (CLL) gene expression data. The CLL data had 24 samples that were either classified as progressive or stable in regards to disease progression. The data came from Dr. Sabina Chiaretti at Division of Hematology, Department of Cellular Biotechnologies and Hematology, University La Sapienza, Rome, Italy and Dr. Jerome Ritz at Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Gene set analysis methods exist to combine SNP-level association p-values into gene sets, calculating a single association p-value for each gene set. This package implements two such methods that require only the calculated SNP p-values, the gene set(s) of interest, and a correlation matrix (if desired). One method (GLOSSI) requires independent SNPs and the other (VEGAS) can take into account correlation (LD) among the SNPs. Built-in plotting functions are available to help users visualize results.
This package is intended to facilitate gene-set association with rare CNVs in case-control studies.
This package provides tools to convert the output of segmentation analysis using DNAcopy to a matrix structure with overlapping segments as rows and samples as columns so that other computational analyses can be applied to segmented data.
ChromDraw is a R package for drawing the schemes of karyotype(s) in the linear and circular fashion. It is possible to visualized cytogenetic marsk on the chromosomes. This tool has own input data format. Input data can be imported from the GenomicRanges data structure. This package can visualized the data in the BED file format. Here is requirement on to the first nine fields of the BED format. Output files format are *.eps and *.svg.