Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including aata visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine.
mastR is an R package designed for automated screening of signatures of interest for specific research questions. The package is developed for generating refined lists of signature genes from multiple group comparisons based on the results from edgeR and limma differential expression (DE) analysis workflow. It also takes into account the background noise of tissue-specificity, which is often ignored by other marker generation tools. This package is particularly useful for the identification of group markers in various biological and medical applications, including cancer research and developmental biology.
mistyR is an implementation of the Multiview Intercellular SpaTialmodeling framework (MISTy). MISTy is an explainable machine learning framework for knowledge extraction and analysis of single-cell, highly multiplexed, spatially resolved data. MISTy facilitates an in-depth understanding of marker interactions by profiling the intra- and intercellular relationships. MISTy is a flexible framework able to process a custom number of views. Each of these views can describe a different spatial context, i.e., define a relationship among the observed expressions of the markers, such as intracellular regulation or paracrine regulation, but also, the views can also capture cell-type specific relationships, capture relations between functional footprints or focus on relations between different anatomical regions. Each MISTy view is considered as a potential source of variability in the measured marker expressions. Each MISTy view is then analyzed for its contribution to the total expression of each marker and is explained in terms of the interactions with other measurements that led to the observed contribution.
MerfishData is an ExperimentHub package that serves publicly available datasets obtained with Multiplexed Error-Robust Fluorescence in situ Hybridization (MERFISH). MERFISH is a massively multiplexed single-molecule imaging technology capable of simultaneously measuring the copy number and spatial distribution of hundreds to tens of thousands of RNA species in individual cells. The scope of the package is to provide MERFISH data for benchmarking and analysis.
Store minor allele frequency data from NHLBI TOPMed for the human genome version hg38.
Affymetrix Affymetrix Mu19KsubA Array annotation data (chip mu19ksuba) assembled using data from public repositories.
Affymetrix mogene21 annotation data (chip mogene21stprobeset) assembled using data from public repositories.
Save MultiAssayExperiments to h5mu files supported by muon and mudata. Muon is a Python framework for multimodal omics data analysis. It uses an HDF5-based format for data storage.
MEIGOR provides a comprehensive environment for performing global optimization tasks in bioinformatics and systems biology. It leverages advanced metaheuristic algorithms to efficiently search the solution space and is specifically tailored to handle the complexity and high-dimensionality of biological datasets. This package supports various optimization routines and is integrated with Bioconductor's infrastructure for a seamless analysis workflow.
Provide functions for performing abundance and compositional based binning on metagenomic samples, directly from FASTA or FASTQ files. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on input FASTA/FASTQ files for fast execution.
MetNet contains functionality to infer metabolic network topologies from quantitative data and high-resolution mass/charge information. Using statistical models (including correlation, mutual information, regression and Bayes statistics) and quantitative data (intensity values of features) adjacency matrices are inferred that can be combined to a consensus matrix. Mass differences calculated between mass/charge values of features will be matched against a data frame of supplied mass/charge differences referring to transformations of enzymatic activities. In a third step, the two levels of information are combined to form a adjacency matrix inferred from both quantitative and structure information.
Our R package MultiRNAflow provides an easy to use unified framework allowing to automatically make both unsupervised and supervised (DE) analysis for datasets with an arbitrary number of biological conditions and time points. In particular, our code makes a deep downstream analysis of DE information, e.g. identifying temporal patterns across biological conditions and DE genes which are specific to a biological condition for each time.
Fragmentation spectral libraries and data to test the msPurity package.
This package provides functionality for processing and statistical analysis of multiplexed assays of variant effect (MAVE) and similar data. The package contains functions covering the full workflow from raw FASTQ files to publication-ready visualizations. A broad range of library designs can be processed with a single, unified interface.
Translating mature miRNA names to different miRBase versions, sequence retrieval, checking names for validity and detecting miRBase version of a given set of names (data from http://www.mirbase.org/).
This package provides a package containing an environment representing the miRNA-1_0.CDF file.
This is a package for the discovery of regulatory regions from Bis-seq data.
Multi-omic Pathway Analysis of Cells (MPAC), integrates multi-omic data for understanding cellular mechanisms. It predicts novel patient groups with distinct pathway profiles as well as identifying key pathway proteins with potential clinical associations. From CNA and RNA-seq data, it determines genes’ DNA and RNA states (i.e., repressed, normal, or activated), which serve as the input for PARADIGM to calculate Inferred Pathway Levels (IPLs). It also permutes DNA and RNA states to create a background distribution to filter IPLs as a way to remove events observed by chance. It provides multiple methods for downstream analysis and visualization.
FHCRC Nelson Lab mpedbarray Annotation Data (mpedbarray) assembled using data from public repositories.
MWASTools provides a complete pipeline to perform metabolome-wide association studies. Key functionalities of the package include: quality control analysis of metabonomic data; MWAS using different association models (partial correlations; generalized linear models); model validation using non-parametric bootstrapping; visualization of MWAS results; NMR metabolite identification using STOCSY; and biological interpretation of MWAS results.
MyVariant.info is a comprehensive aggregation of variant annotation resources. myvariant is a wrapper for querying MyVariant.info services.
This package implements the inference of candidate master regulator proteins from multi-omics data (MOMA) algorithm, as well as ancillary analysis and visualization functions.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mu11KsubA\_probe\_tab.
MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data. MetCirc uses the Spectra object infrastructure defined in the package Spectra that stores MS/MS spectra. MetCirc offers functionality to calculate similarity between precursors based on the normalised dot product, neutral losses or user-defined functions and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features.