Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
RNAmodR provides classes and workflows for loading/aggregation data from high througput sequencing aimed at detecting post-transcriptional modifications through analysis of specific patterns. In addition, utilities are provided to validate and visualize the results. The RNAmodR package provides a core functionality from which specific analysis strategies can be easily implemented as a seperate package.
Despite the recent advances of modern GWAS methods, it still remains an important problem of addressing calculation an effect size and corresponding p-value for the whole gene rather than for single variant. The R- package rqt offers gene-level GWAS meta-analysis. For more information, see: "Gene-set association tests for next-generation sequencing data" by Lee et al (2016), Bioinformatics, 32(17), i611-i619, <doi:10.1093/bioinformatics/btw429>.
This package provides tools for comprehensive gene set enrichment and extraction of multi-resource high confidence subnetworks. RITAN facilitates bioinformatic tasks for enabling network biology research.
RRBS data set comprising 12 samples with simulated differentially methylated regions (DMRs).
Package provides CNV (based on Merge snp) datasets from The Cancer Genome Atlas Project for all cohorts types from http://gdac.broadinstitute.org/. Data format is explained here https://wiki.nci.nih.gov/display/TCGA/Retrieving +Data+Using+the+Data+Matrix. Data from 2015-11-01 snapshot.
RNAmodR.RiboMethSeq implements the detection of 2'-O methylations on RNA from experimental data generated with the RiboMethSeq protocol. The package builds on the core functionality of the RNAmodR package to detect specific patterns of the modifications in high throughput sequencing data.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RT-U34\_probe\_tab.
Headers and some wrapper functions from the SeqAn C++ library for ease of usage in R.
Seamlessly interfaces the Basic Local Alignment Search Tool (BLAST) running locally to search genetic sequence data bases. This work was partially supported by grant no. R21HG005912 from the National Human Genome Research Institute.
RNA degradation is monitored through measurement of RNA abundance after inhibiting RNA synthesis. This package has functions and example scripts to facilitate (1) data normalization, (2) data modeling using constant decay rate or time-dependent decay rate models, (3) the evaluation of treatment or genotype effects, and (4) plotting of the data and models. Data Normalization: functions and scripts make easy the normalization to the initial (T0) RNA abundance, as well as a method to correct for artificial inflation of Reads per Million (RPM) abundance in global assessments as the total size of the RNA pool decreases. Modeling: Normalized data is then modeled using maximum likelihood to fit parameters. For making treatment or genotype comparisons (up to four), the modeling step models all possible treatment effects on each gene by repeating the modeling with constraints on the model parameters (i.e., the decay rate of treatments A and B are modeled once with them being equal and again allowing them to both vary independently). Model Selection: The AICc value is calculated for each model, and the model with the lowest AICc is chosen. Modeling results of selected models are then compiled into a single data frame. Graphical Plotting: functions are provided to easily visualize decay data model, or half-life distributions using ggplot2 package functions.
This package was automatically created by package AnnotationForge version 1.7.17. The exon-level probeset genome location was retrieved from Netaffx using AffyCompatible.
Affymetrix Affymetrix Rat230_2 Array annotation data (chip rat2302) assembled using data from public repositories.
The package provides functions to read raw RT-qPCR data of different platforms.
Affymetrix ragene21 annotation data (chip ragene21stprobeset) assembled using data from public repositories.
The NCI-60 cancer cell line panel has been used over the course of several decades as an anti-cancer drug screen. This panel was developed as part of the Developmental Therapeutics Program (DTP, http://dtp.nci.nih.gov/) of the U.S. National Cancer Institute (NCI). Thousands of compounds have been tested on the NCI-60, which have been extensively characterized by many platforms for gene and protein expression, copy number, mutation, and others (Reinhold, et al., 2012). The purpose of the CellMiner project (http://discover.nci.nih.gov/ cellminer) has been to integrate data from multiple platforms used to analyze the NCI-60 and to provide a powerful suite of tools for exploration of NCI-60 data.
Codelink Rat Inflammation 16 Bioarray annotation data (chip ri16cod) assembled using data from public repositories.
This package performs differential pattern analysis for Ribo-seq data. It identifies genes with significantly different patterns in the ribosome footprint between two conditions. RiboDiPA contains five major components including bam file processing, P-site mapping, data binning, differential pattern analysis and footprint visualization.
This package analyze spatial transcriptomics data through cross-regional cell type-specific analysis. It selects regions of interest (ROIs) and identifys cross-regional cell type-specific differential signals. The ROIs can be selected using automatic algorithm or through manual selection. It facilitates manual selection of ROIs using a shiny application.
Codelink UniSet Rat I Bioarray (~10 000 rat gene targets) annotation data (chip r10kcod) assembled using data from public repositories.
This package provides a package containing an environment representing the RG_U34A.cdf file.
RNA-sense tool compares RNA-seq time curves in two experimental conditions, i.e. wild-type and mutant, and works in three steps. At Step 1, it builds expression profile for each transcript in one condition (i.e. wild-type) and tests if the transcript abundance grows or decays significantly. Dynamic transcripts are then sorted to non-overlapping groups (time profiles) by the time point of switch up or down. At Step 2, RNA-sense outputs the groups of differentially expressed transcripts, which are up- or downregulated in the mutant compared to the wild-type at each time point. At Step 3, Correlations (Fisher's exact test) between the outputs of Step 1 (switch up- and switch down- time profile groups) and the outputs of Step2 (differentially expressed transcript groups) are calculated. The results of the correlation analysis are printed as two-dimensional color plot, with time profiles and differential expression groups at y- and x-axis, respectively, and facilitates the biological interpretation of the data.
Codelink Rat Whole Genome Bioarray (~34 000 rat gene targets) annotation data (chip rwgcod) assembled using data from public repositories.
Affymetrix Affymetrix RG_U34A Array annotation data (chip rgu34a) assembled using data from public repositories.
This package provides an R wrapper for the popular Bowtie2 sequencing read aligner, optimized to run on NVIDIA graphics cards. It includes wrapper functions that enable both genome indexing and alignment to the generated indexes, ensuring high performance and ease of use within the R environment.