Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fast, flexible and user-friendly tools for distribution comparison through direct density ratio estimation. The estimated density ratio can be used for covariate shift adjustment, outlier-detection, change-point detection, classification and evaluation of synthetic data quality. The package implements multiple non-parametric estimation techniques (unconstrained least-squares importance fitting, ulsif(), Kullback-Leibler importance estimation procedure, kliep(), spectral density ratio estimation, spectral(), kernel mean matching, kmm(), and least-squares hetero-distributional subspace search, lhss()). with automatic tuning of hyperparameters. Helper functions are available for two-sample testing and visualizing the density ratios. For an overview on density ratio estimation, see Sugiyama et al. (2012) <doi:10.1017/CBO9781139035613> for a general overview, and the help files for references on the specific estimation techniques.
Secant acceleration applied to derivative-free Spectral Residual Methods for solving large-scale nonlinear systems of equations. The main reference follows: E. G. Birgin and J. M. Martinez (2022) <doi:10.1137/20M1388024>.
Estimates probabilistic phylogenetic Principal Component Analysis (PCA) and non-phylogenetic probabilistic PCA. Provides methods to implement alternative models of trait evolution including Brownian motion (BM), Ornstein-Uhlenbeck (OU), Early Burst (EB), and Pagel's lambda. Also provides flexible biplot functions.
This package provides tools to sort DICOM-format medical image files, and convert them to NIfTI-1 format.
For working with the DataRobot predictive modeling platform's API <https://www.datarobot.com/>.
This package provides a toolbox to create and manage metadata files and configuration profiles: files used to configure the parameters and initial settings for some computer programs.
Fast functions for effective sample size, weighted multivariate mean, variance, and quantile computation, and weight diagnostic plot for generic importance sampling type or other probability weighted samples.
This package provides mean squared error (MSE) and plot the kernel densities related to extreme value distributions with their estimated values. By using Gumbel and Weibull Kernel. See Salha et al. (2014) <doi:10.4236/ojs.2014.48061> and Khan and Akbar (2021) <doi:10.4236/ojs.2021.112018 >.
Chaos theory has been hailed as a revolution of thoughts and attracting ever increasing attention of many scientists from diverse disciplines. Chaotic systems are nonlinear deterministic dynamic systems which can behave like an erratic and apparently random motion. A relevant field inside chaos theory and nonlinear time series analysis is the detection of a chaotic behaviour from empirical time series data. One of the main features of chaos is the well known initial value sensitivity property. Methods and techniques related to test the hypothesis of chaos try to quantify the initial value sensitive property estimating the Lyapunov exponents. The DChaos package provides different useful tools and efficient algorithms which test robustly the hypothesis of chaos based on the Lyapunov exponent in order to know if the data generating process behind time series behave chaotically or not.
For estimation of a variable of interest using Kalman filter by incorporating results from previous assessments, i.e. through development weighted estimates where weights are assigned inversely proportional to the variance of existing and new estimates. For reference see Ehlers et al. (2017) <doi:10.20944/preprints201710.0098.v1>.
This package contains a single function dclust() for divisive hierarchical clustering based on recursive k-means partitioning (k = 2). Useful for clustering large datasets where computation of a n x n distance matrix is not feasible (e.g. n > 10,000 records). For further information see Steinbach, Karypis and Kumar (2000) <http://glaros.dtc.umn.edu/gkhome/fetch/papers/docclusterKDDTMW00.pdf>.
Individual gene expression patterns are encoded into a series of eigenvector patterns ('WGCNA package). Using the framework of linear model-based differential expression comparisons ('limma package), time-course expression patterns for genes in different conditions are compared and analyzed for significant pattern changes. For reference, see: Greenham K, Sartor RC, Zorich S, Lou P, Mockler TC and McClung CR. eLife. 2020 Sep 30;9(4). <doi:10.7554/eLife.58993>.
Utility functions to be used to analyse datasets obtained from seed germination/emergence assays. Fits several types of seed germination/emergence models, including those reported in Onofri et al. (2018) "Hydrothermal-time-to-event models for seed germination", European Journal of Agronomy, 101, 129-139 <doi:10.1016/j.eja.2018.08.011>. Contains several datasets for practicing.
This package provides methods for simultaneous clustering and dimensionality reduction such as: Double k-means, Reduced k-means, Factorial k-means, Clustering with Disjoint PCA but also methods for exclusively dimensionality reduction: Disjoint PCA, Disjoint FA. The statistical methods implemented refer to the following articles: de Soete G., Carroll J. (1994) "K-means clustering in a low-dimensional Euclidean space" <doi:10.1007/978-3-642-51175-2_24> ; Vichi M. (2001) "Double k-means Clustering for Simultaneous Classification of Objects and Variables" <doi:10.1007/978-3-642-59471-7_6> ; Vichi M., Kiers H.A.L. (2001) "Factorial k-means analysis for two-way data" <doi:10.1016/S0167-9473(00)00064-5> ; Vichi M., Saporta G. (2009) "Clustering and disjoint principal component analysis" <doi:10.1016/j.csda.2008.05.028> ; Vichi M. (2017) "Disjoint factor analysis with cross-loadings" <doi:10.1007/s11634-016-0263-9>.
This package provides R bindings to the dockview JavaScript library <https://dockview.dev/>. Create fully customizable grid layouts (docks) in seconds to include in interactive R reports with R Markdown or Quarto or in shiny apps <https://shiny.posit.co/>. In shiny mode, modify docks by dynamically adding, removing or moving panels or groups of panels from the server function. Choose among 8 stunning themes (dark and light), serialise the state of a dock to restore it later.
Comparison of the accuracy of two binary diagnostic tests in a "paired" study design, i.e. when each test is applied to each subject in the study.
Facilitates the analysis of SNP (single nucleotide polymorphism) and silicodart (presence/absence) data. dartR.popgen provides a suit of functions to analyse such data in a population genetics context. It provides several functions to calculate population genetic metrics and to study population structure. Quite a few functions need additional software to be able to run (gl.run.structure(), gl.blast(), gl.LDNe()). You find detailed description in the help pages how to download and link the packages so the function can run the software. dartR.popgen is part of the the dartRverse suit of packages. Gruber et al. (2018) <doi:10.1111/1755-0998.12745>. Mijangos et al. (2022) <doi:10.1111/2041-210X.13918>.
Generate reports that enable quick visual review of temporal shifts in record-level data. Time series plots showing aggregated values are automatically created for each data field (column) depending on its contents (e.g. min/max/mean values for numeric data, no. of distinct values for categorical data), as well as overviews for missing values, non-conformant values, and duplicated rows. The resulting reports are shareable and can contribute to forming a transparent record of the entire analysis process. It is designed with Electronic Health Records in mind, but can be used for any type of record-level temporal data (i.e. tabular data where each row represents a single "event", one column contains the "event date", and other columns contain any associated values for the event).
Discrete factor analysis for dependent Poisson and negative binomial models with truncation, zero inflation, and zero inflated truncation.
Statistical methods for DNA mixture analysis. This package is a lite-version of the DNAmixtures package to allow users without a HUGIN software license to experiment with the statistical methodology. While the lite-version aims to provide the full functionality it is noticeably less efficient than the original DNAmixtures package. For details on implementation and methodology see <https://dnamixtures.r-forge.r-project.org/>.
Abstract of Manuscript. Differential gene expression analysis using RNA sequencing (RNA-seq) data is a standard approach for making biological discoveries. Ongoing large-scale efforts to process and normalize publicly available gene expression data enable rapid and systematic reanalysis. While several powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources systematically recompute differentially expressed genes (DEGs) generated from individual studies. We developed a robust differential expression analysis pipeline to recompute 3162 human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and 142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to interact with the recomputed DEG lists. DEET, available through CRAN and RShiny, systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF targets to their own gene lists. DEET identifies relevant studies based on shared results with the userĂ¢ s gene lists, aiding in hypothesis generation and data-driven literature review. Sokolowski, Dustin J., et al. "Differential Expression Enrichment Tool (DEET): an interactive atlas of human differential gene expression." Nucleic Acids Research Genomics and Bioinformatics (2023).
This package provides a flexible container to transport and manipulate complex sets of data. These data may consist of multiple data files and associated meta data and ancillary files. Individual data objects have associated system level meta data, and data files are linked together using the OAI-ORE standard resource map which describes the relationships between the files. The OAI- ORE standard is described at <https://www.openarchives.org/ore/>. Data packages can be serialized and transported as structured files that have been created following the BagIt specification. The BagIt specification is described at <https://datatracker.ietf.org/doc/html/draft-kunze-bagit-08>.
Estimation of Difference-in-Differences (DiD) estimators from de Chaisemartin et al. (2025) <doi:10.48550/arXiv.2405.04465> in Heterogeneous Adoption Designs with Quasi Untreated Groups.
This package provides methods by Steinhauser et al. (2016) <DOI:10.1186/s12874-016-0196-1> for meta-analysis of diagnostic accuracy studies with several cutpoints.