Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation to perform forecasting of locally stationary wavelet processes by examining the local second order structure of the time series.
Datasets for teaching quantitative approaches and modeling in archaeology and paleontology. This package provides several types of data related to broad topics (cultural evolution, radiocarbon dating, paleoenvironments, etc.), which can be used to illustrate statistical methods in the classroom (multivariate data analysis, compositional data analysis, diversity measurement, etc.).
This package provides a toolbox to derive flexible cutoffs for fit indices in Covariance-based Structural Equation Modeling based on the paper by Niemand & Mai (2018) <doi:10.1007/s11747-018-0602-9>. Flexible cutoffs are an alternative to fixed cutoffs - rules-of-thumb - regarding an appropriate cutoff for fit indices such as CFI or SRMR'. It has been demonstrated that these flexible cutoffs perform better than fixed cutoffs in grey areas where misspecification is not easy to detect. The package provides an alternative to the tool at <https://flexiblecutoffs.org> as it allows to tailor flexible cutoffs to a given dataset and model, which is so far not available in the tool. The package simulates fit indices based on a given dataset and model and then estimates the flexible cutoffs. Some useful functions, e.g., to determine the GoF- or BoF-nature of a fit index, are provided. So far, additional options for a relative use (is a model better than another?) are provided in an exploratory manner.
Processing of large-in-memory/large-on disk rasters and spatial vectors using GRASS <https://grass.osgeo.org/>. Most functions in the terra package are recreated. Processing of medium-sized and smaller spatial objects will nearly always be faster using terra or sf', but for large-in-memory/large-on-disk objects, fasterRaster may be faster. To use most of the functions, you must have the stand-alone version (not the OSGeoW4 installer version) of GRASS 8.0 or higher.
We implement a cocktail algorithm, a good mixture of coordinate decent, the majorization-minimization principle and the strong rule, for computing the solution paths of the elastic net penalized Cox's proportional hazards model. The package is an implementation of Yang, Y. and Zou, H. (2013) <doi:10.4310/SII.2013.v6.n2.a1>.
The main functions in this package are with_cache() and cached_read(). The former is a simple way to cache an R object into a file on disk, using cachem'. The latter is a wrapper around any standard read function, but caches both the output and the file list info. If the input file list info hasn't changed, the cache is used; otherwise, the original files are re-read. This can save time if the original operation requires reading from many files, and/or involves lots of processing.
Extend shiny.semantic with extra Fomantic UI components. Create pages in a format similar to shiny', form validation and more.
This package provides a web application for displaying, analysing and forecasting univariate time series. Includes basic methods such as mean, naïve, seasonal naïve and drift, as well as more complex methods such as Holt-Winters Box,G and Jenkins, G (1976) <doi:10.1111/jtsa.12194> and ARIMA Brockwell, P.J. and R.A.Davis (1991) <doi:10.1007/978-1-4419-0320-4>.
This package provides methods and tools designed to improve the forecast accuracy for a linearly constrained multiple time series, while fulfilling the linear/aggregation relationships linking the components (Girolimetto and Di Fonzo, 2024 <doi:10.48550/arXiv.2412.03429>). FoCo2 offers multi-task forecast combination and reconciliation approaches leveraging input from multiple forecasting models or experts and ensuring that the resulting forecasts satisfy specified linear constraints. In addition, linear inequality constraints (e.g., non-negativity of the forecasts) can be imposed, if needed.
Read and write Frictionless Data Packages. A Data Package (<https://specs.frictionlessdata.io/data-package/>) is a simple container format and standard to describe and package a collection of (tabular) data. It is typically used to publish FAIR (<https://www.go-fair.org/fair-principles/>) and open datasets.
This package provides tools for generating an informative type of line graph, the frequency profile, which allows single behaviors, multiple behaviors, or the specific behavioral patterns of individual subjects to be graphed from occurrence/nonoccurrence behavioral data.
The goal of this package is to provide an improved version of WA-PLS (Weighted Averaging Partial Least Squares) by including the tolerances of taxa and the frequency of the sampled climate variable. This package also provides a way of leave-out cross-validation that removes both the test site and sites that are both geographically close and climatically close for each cycle, to avoid the risk of pseudo-replication.
Implementation of the Interval Testing Procedure for functional data in different frameworks (i.e., one or two-population frameworks, functional linear models) by means of different basis expansions (i.e., B-spline, Fourier, and phase-amplitude Fourier). The current version of the package requires functional data evaluated on a uniform grid; it automatically projects each function on a chosen functional basis; it performs the entire family of multivariate tests; and, finally, it provides the matrix of the p-values of the previous tests and the vector of the corrected p-values. The functional basis, the coupled or uncoupled scenario, and the kind of test can be chosen by the user. The package provides also a plotting function creating a graphical output of the procedure: the p-value heat-map, the plot of the corrected p-values, and the plot of the functional data.
This package provides functions that support stable prediction and classification with radiomics data through factor-analytic modeling. For details, see Peeters et al. (2019) <doi:10.48550/arXiv.1903.11696>.
Procedure for solving the maximin problem for identical design across heterogeneous data groups. Particularly efficient when the design matrix is either orthogonal or has tensor structure. Orthogonal wavelets can be specified for 1d, 2d or 3d data simply by name. For tensor structured design the tensor components (two or three) may be supplied. The package also provides an efficient implementation of the generic magging estimator.
This package provides a game for two players: Who gets first four in a row (horizontal, vertical or diagonal) wins. As board game published by Milton Bradley, designed by Howard Wexler and Ned Strongin.
The four-gamete test is based on the infinite-sites model which assumes that the probability of the same mutation occurring twice (recurrent or parallel mutations) and the probability of a mutation back to the original state (reverse mutations) are close to zero. Without these types of mutations, the only explanation for observing the four dilocus genotypes (example below) is recombination (Hudson and Kaplan 1985, Genetics 111:147-164). Thus, the presence of all four gametes is also called phylogenetic incompatibility.
This package provides a collection of functions for calculating Floristic Quality Assessment (FQA) metrics using regional FQA databases that have been approved or approved with reservations as ecological planning models by the U.S. Army Corps of Engineers (USACE). For information on FQA see Spyreas (2019) <doi:10.1002/ecs2.2825>. These databases are stored in a sister R package, fqadata'. Both packages were developed for the USACE by the U.S. Army Engineer Research and Development Centerâ s Environmental Laboratory.
This package provides tools for fluctuations analysis of mutant cells counts. Main reference is A. Mazoyer, R. Drouilhet, S. Despreaux and B. Ycart (2017) <doi:10.32614/RJ-2017-029>.
Bayesian estimation of forced choice models in Item Response Theory using rstan (See Stan Development Team (2020) <https://mc-stan.org/>).
Perform optimal transport based tests in factorial designs as introduced in Groppe et al. (2025) <doi:10.48550/arXiv.2509.13970> via the FDOTT() function. These tests are inspired by ANOVA and its nonparametric counterparts. They allow for testing linear relationships in factorial designs between finitely supported probability measures on a metric space. Such relationships include equality of all measures (no treatment effect), interaction effects between a number of factors, as well as main and simple factor effects.
This package implements fast change point detection algorithm based on the paper "Sequential Gradient Descent and Quasi-Newton's Method for Change-Point Analysis" by Xianyang Zhang, Trisha Dawn <https://proceedings.mlr.press/v206/zhang23b.html>. The algorithm is based on dynamic programming with pruning and sequential gradient descent. It is able to detect change points a magnitude faster than the vanilla Pruned Exact Linear Time(PELT). The package includes examples of linear regression, logistic regression, Poisson regression, penalized linear regression data, and whole lot more examples with custom cost function in case the user wants to use their own cost function.
Simulates and fits semiparametric shared frailty models under a wide range of frailty distributions using a consistent and asymptotically-normal estimator. Currently supports: gamma, power variance function, log-normal, and inverse Gaussian frailty models.
This package provides a plugin for fiery that supports various forms of authorization and authentication schemes. Schemes can be required in various combinations or by themselves and can be combined with scopes to provide fine-grained access control to the server.