Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Use spectrophotometry measurements performed on insects as a way to infer pathogens virulence. Insect movements cause fluctuations in fluorescence signal, and functions are provided to estimate when the insect has died as the moment when variance in autofluorescence signal drops to zero. The package provides functions to obtain this estimate together with functions to import spectrophotometry data from a Biotek microplate reader. Details of the method are given in Parthuisot et al. (2018) <doi:10.1101/297929>.
Download geospatial data available from several federated data sources (mainly sources maintained by the US Federal government). Currently, the package enables extraction from nine datasets: The National Elevation Dataset digital elevation models (<https://www.usgs.gov/3d-elevation-program> 1 and 1/3 arc-second; USGS); The National Hydrography Dataset (<https://www.usgs.gov/national-hydrography/national-hydrography-dataset>; USGS); The Soil Survey Geographic (SSURGO) database from the National Cooperative Soil Survey (<https://websoilsurvey.sc.egov.usda.gov/>; NCSS), which is led by the Natural Resources Conservation Service (NRCS) under the USDA; the Global Historical Climatology Network (<https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily>; GHCN), coordinated by National Climatic Data Center at NOAA; the Daymet gridded estimates of daily weather parameters for North America, version 4, available from the Oak Ridge National Laboratory's Distributed Active Archive Center (<https://daymet.ornl.gov/>; DAAC); the International Tree Ring Data Bank; the National Land Cover Database (<https://www.mrlc.gov/>; NLCD); the Cropland Data Layer from the National Agricultural Statistics Service (<https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php>; NASS); and the PAD-US dataset of protected area boundaries (<https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-data-overview>; USGS).
Creation of an input model (fitted distribution) via the frequentist model averaging (FMA) approach and generate random-variates from the distribution specified by "myfit" which is the fitted input model via the FMA approach. See W. X. Jiang and B. L. Nelson (2018), "Better Input Modeling via Model Averaging," Proceedings of the 2018 Winter Simulation Conference, IEEE Press, 1575-1586.
This package provides color palettes designed to be reminiscent of text on paper. The color schemes were taken from <https://stephango.com/flexoki>. Includes discrete, continuous, and binned scales that are not necessarily color-blind friendly. Simple scale and theme functions are available for use with ggplot2'.
Routines for the estimation or simultaneous estimation and variable selection in several functional semiparametric models with scalar responses are provided. These models include the functional single-index model, the semi-functional partial linear model, and the semi-functional partial linear single-index model. Additionally, the package offers algorithms for handling scalar covariates with linear effects that originate from the discretization of a curve. This functionality is applicable in the context of the linear model, the multi-functional partial linear model, and the multi-functional partial linear single-index model.
It implements the Nelson-Siegel and the Nelson-Siegel-Svensson term structures.
Extracts and parses structured metadata ('YAML or TOML') from the beginning of text documents. Front matter is a common pattern in Quarto documents, R Markdown documents, static site generators, documentation systems, content management tools and even Python and R scripts where metadata is placed at the top of a document, separated from the main content by delimiter fences.
This package provides tools to support systematic and reproducible workflows for both stationary and nonstationary flood frequency analysis, with applications extending to other hydroclimate extremes, such as precipitation frequency analysis. This package implements the FFA framework proposed by Vidrio- Sahagún et al. (2024) <doi:10.1016/j.envsoft.2024.105940>, originally developed in MATLAB', now adapted for the R environment. This work was funded by the Flood Hazard Identification and Mapping Program of Environment and Climate Change Canada, as well as the Canada Research Chair (Tier 1) awarded to Dr. Pietroniro.
With the functions in this package you can check the validity of the following financial instrument identifiers: FIGI (Financial Instrument Global Identifier <https://www.openfigi.com/about/figi>), CUSIP (Committee on Uniform Security Identification Procedures <https://www.cusip.com/identifiers.html#/CUSIP>), ISIN (International Securities Identification Number <https://www.cusip.com/identifiers.html#/ISIN>), SEDOL (Stock Exchange Daily Official List <https://www2.lseg.com/SEDOL-masterfile-service-tech-guide-v8.6>). You can also calculate the FIGI checksum of 11-character strings, which can be useful if you want to create your own FIGI identifiers.
This package creates a HTML widget which displays the results of searching for a pattern in files in a given git repository, including all its branches. The results can also be returned in a dataframe.
These functions were developed to support statistical analysis on functional covariance operators. The package contains functions to: - compute 2-Wasserstein distances between Gaussian Processes as in Masarotto, Panaretos & Zemel (2019) <doi:10.1007/s13171-018-0130-1>; - compute the Wasserstein barycenter (Frechet mean) as in Masarotto, Panaretos & Zemel (2019) <doi:10.1007/s13171-018-0130-1>; - perform analysis of variance testing procedures for functional covariances and tangent space principal component analysis of covariance operators as in Masarotto, Panaretos & Zemel (2022) <arXiv:2212.04797>. - perform a soft-clustering based on the Wasserstein distance where functional data are classified based on their covariance structure as in Masarotto & Masarotto (2023) <doi:10.1111/sjos.12692>.
Allows maximum likelihood fitting of cluster-weighted models, a class of mixtures of regression models with random covariates. Methods are described in Angelo Mazza, Antonio Punzo, Salvatore Ingrassia (2018) <doi:10.18637/jss.v086.i02>.
This package provides functions for converting decimals to a matrix of numerators and denominators or a character vector of fractions. Supports mixed or improper fractions, finding common denominators for vectors of fractions, limiting denominators to powers of ten, and limiting denominators to a maximum value. Also includes helper functions for finding the least common multiple and greatest common divisor for a vector of integers. Implemented using C++ for maximum speed.
Frequentist assisted by Bayes (FAB) p-values and confidence interval construction. See Hoff (2019) <arXiv:1907.12589> "Smaller p-values via indirect information", Hoff and Yu (2019) <doi:10.1214/18-EJS1517> "Exact adaptive confidence intervals for linear regression coefficients", and Yu and Hoff (2018) <doi:10.1093/biomet/asy009> "Adaptive multigroup confidence intervals with constant coverage".
The FLEX method, developed by Yoon and Choi (2013) <doi:10.1007/978-3-642-33042-1_21>, performs least squares estimation for fuzzy predictors and outcomes, generating crisp regression coefficients by minimizing the distance between observed and predicted outcomes. It also provides functions for fuzzifying data and inference tasks, including significance testing, fit indices, and confidence interval estimation.
This package provides a collection of commonly used univariate and multivariate time series forecasting models including automatically selected exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models. These models work within the fable framework provided by the fabletools package, which provides the tools to evaluate, visualise, and combine models in a workflow consistent with the tidyverse.
This package implements the h-likelihood estimation procedures for general frailty models including competing-risk models and joint models.
Comparisons of floating point numbers are problematic due to errors associated with the binary representation of decimal numbers. Despite being aware of these problems, people still use numerical methods that fail to account for these and other rounding errors (this pitfall is the first to be highlighted in Circle 1 of Burns (2012) The R Inferno <https://www.burns-stat.com/pages/Tutor/R_inferno.pdf>). This package provides new relational operators useful for performing floating point number comparisons with a set tolerance.
Data from various catalogs of astrophysical gamma-ray sources detected by NASA's Large Area Telescope (The Astrophysical Journal, 697, 1071, 2009 June 1), on board the Fermi gamma-ray satellite. More information on Fermi and its data products is available from the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc/).
Bindings to libfluidsynth to parse and synthesize MIDI files. It can read MIDI into a data frame, play it on the local audio device, or convert into an audio file.
Stores large arrays in files to avoid occupying large memories. Implemented with super fast gigabyte-level multi-threaded reading/writing via OpenMP'. Supports multiple non-character data types (double, float, complex, integer, logical, and raw).
Likelihood-free inference method for stochastic models. Uses a deterministic optimizer on simple simulations of the model that are performed with a prior drawn randomness by applying the inverse transform method. Is designed to work on its own and also by using the Julia package Jflimo available on the git page of the project: <https://metabarcoding.org/flimo>.
This package contains functions for operations with fuzzy cognitive maps using t-norm and s-norm operators. T-norms and S-norms are described by Dov M. Gabbay and George Metcalfe (2007) <doi:10.1007/s00153-007-0047-1>. System indicators are described by Cox, Earl D. (1995) <isbn:1886801010>. Executable examples are provided in the "inst/examples" folder.
This package provides a collection of functions to fit and explore single, multi-component and restricted Frequency Modulated Moebius (FMM) models. FMM is a nonlinear parametric regression model capable of fitting non-sinusoidal shapes in rhythmic patterns. Details about the mathematical formulation of FMM models can be found in Rueda et al. (2019) <doi:10.1038/s41598-019-54569-1>.