Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Numerical integration with Gram polynomials (based on <arXiv:2106.14875> [math.NA] 28 Jun 2021, by Irfan Muhammad [School of Computer Science, University of Birmingham, UK]).
Extension of ggplot2 providing layers, scales and preprocessing functions useful to represent behavioural variables that are recorded over multiple animals and days. This package is part of the rethomics framework <https://rethomics.github.io/>.
Data sets from the book Generalized Linear Models with Examples in R by Dunn and Smyth.
This package provides a collection of I/O tools for handling the most commonly used genomic datafiles, like fasta/-q, bed, gff, gtf, ped/map and vcf.
This package contains methods for fitting Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). Generalized regression models are common methods for handling data for which assuming Gaussian-distributed errors is not appropriate. For instance, if the response of interest is binary, count, or proportion data, one can instead model the expectation of the response based on an appropriate data-generating distribution. This package provides methods for fitting GLMs and GAMs under Beta regression, Poisson regression, Gamma regression, and Binomial regression (currently GLM only) settings. Models are fit using local scoring algorithms described in Hastie and Tibshirani (1990) <doi:10.1214/ss/1177013604>.
Computes the test statistic and p-value of the Cramer-von Mises and Anderson-Darling test for some continuous distribution functions proposed by Chen and Balakrishnan (1995) <http://asq.org/qic/display-item/index.html?item=11407>. In addition to our classic distribution functions here, we calculate the Goodness of Fit (GoF) test to dataset which follows the extreme value distribution function, without remembering the formula of distribution/density functions. Calculates the Value at Risk (VaR) and Average VaR are another important risk factors which are estimated by using well-known distribution functions. Pflug and Romisch (2007, ISBN: 9812707409) is a good reference to study the properties of risk measures.
Generalizes application of gray-level co-occurrence matrix (GLCM) metrics to objects outside of images. The current focus is to apply GLCM metrics to the study of biological networks and fitness landscapes that are used in studying evolutionary medicine and biology, particularly the evolution of cancer resistance. The package was developed as part of the author's publication in Physics in Medicine and Biology Barker-Clarke et al. (2023) <doi:10.1088/1361-6560/ace305>. A general reference to learn more about mathematical oncology can be found at Rockne et al. (2019) <doi:10.1088/1478-3975/ab1a09>.
Two-step modeling with separation of sources of variation through analysis of variance and subsequent multivariate modeling through a range of unsupervised and supervised statistical methods. Separation can focus on removal of interfering effects or isolation of effects of interest. EF Mosleth et al. (2021) <doi:10.1038/s41598-021-82388-w> and EF Mosleth et al. (2020) <doi:10.1016/B978-0-12-409547-2.14882-6>.
An implementation of ggplot2'-methods to present the composition of Solvency II Solvency Capital Requirement (SCR) as a series of concentric circle-parts. Solvency II (Solvency 2) is European insurance legislation, coming in force by the delegated acts of October 10, 2014. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL%3A2015%3A012%3ATOC>. Additional files, defining the structure of the Standard Formula (SF) method of the SCR-calculation are provided. The structure files can be adopted for localization or for insurance companies who use Internal Models (IM). Options are available for combining smaller components, horizontal and vertical scaling, rotation, and plotting only some circle-parts. With outlines and connectors several SCR-compositions can be compared, for example in ORSA-scenarios (Own Risk and Solvency Assessment).
Conducts hierarchical partitioning to calculate individual contributions of each predictor (fixed effects) towards marginal R2 for generalized linear mixed-effect model (including lm, glm and glmm) based on output of r.squaredGLMM() in MuMIn', applying the algorithm of Lai J.,Zou Y., Zhang S.,Zhang X.,Mao L.(2022)glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models.Journal of Plant Ecology,15(6)1302-1307<doi:10.1093/jpe/rtac096>.
Hierarchical Bayesian models. The package provides tools to fit two response time models, using the population-based Markov Chain Monte Carlo.
Create plots that combine a phylogeny and frequency dynamics. Phylogenetic input can be a generic adjacency matrix or a tree of class "phylo". Inspired by similar plots in publications of the labs of RE Lenski and JE Barrick. Named for HJ Muller (who popularised such plots) and H Wickham (whose code this package exploits).
This package provides tools for sparse regression modelling with grouped predictors using the group subset selection penalty. Uses coordinate descent and local search algorithms to rapidly deliver near optimal estimates. The group subset penalty can be combined with a group lasso or ridge penalty for added shrinkage. Linear and logistic regression are supported, as are overlapping groups.
Allows plotting data on bathymetric maps using ggplot2'. Plotting oceanographic spatial data is made as simple as feasible, but also flexible for custom modifications. Data that contain geographic information from anywhere around the globe can be plotted on maps generated by the basemap() or qmap() functions using ggplot2 layers separated by the + operator. The package uses spatial shape- ('sf') and raster ('stars') files, geospatial packages for R to manipulate, and the ggplot2 package to plot these files. The package ships with low-resolution spatial data files and higher resolution files for detailed maps are stored in the ggOceanMapsLargeData repository on GitHub and downloaded automatically when needed.
The goal of this package is to translate between different languages without any Google API authentication which is pain and you must pay for the key, This package is free and lightweight.
This package provides a collection of Geoms for R's ggplot2 library. geom_shadowpath(), geom_shadowline(), geom_shadowstep() and geom_shadowpoint() functions draw a shadow below lines to make busy plots more aesthetically pleasing. geom_glowpath(), geom_glowline(), geom_glowstep() and geom_glowpoint() add a neon glow around lines to get a steampunk style.
This package performs generalized Susceptible-Exposed-Infected-Recovered (SEIR) modeling to predict epidemic curves. The method is described in Peng et al. (2020) <doi:10.1101/2020.02.16.20023465>.
This package provides methods and tools for the analysis of Genome Wide Identity-by-Descent ('gwid') mapping data, focusing on testing whether there is a higher occurrence of Identity-By-Descent (IBD) segments around potential causal variants in cases compared to controls, which is crucial for identifying rare variants. To enhance its analytical power, gwid incorporates a Sliding Window Approach, allowing for the detection and analysis of signals from multiple Single Nucleotide Polymorphisms (SNPs).
This package provides tools.
Intended for both technical and non-technical users to create interactive data visualizations through a web browser GUI without writing any code.
This package provides tools to measure the reliability of an Information Retrieval test collection. It allows users to estimate reliability using Generalizability Theory and map those estimates onto well-known indicators such as Kendall tau correlation or sensitivity.
We implement various tests for the composite hypothesis of testing the fit to the family of inverse Gaussian distributions. Included are methods presented by Allison, J.S., Betsch, S., Ebner, B., and Visagie, I.J.H. (2022) <doi:10.48550/arXiv.1910.14119>, as well as two tests from Henze and Klar (2002) <doi:10.1023/A:1022442506681>. Additionally, the package implements a test proposed by Baringhaus and Gaigall (2015) <doi:10.1016/j.jmva.2015.05.013>. For each test a parametric bootstrap procedure is implemented.
This package implements the GAMbag, GAMrsm and GAMens ensemble classifiers for binary classification (De Bock et al., 2010) <doi:10.1016/j.csda.2009.12.013>. The ensembles implement Bagging (Breiman, 1996) <doi:10.1023/A:1010933404324>, the Random Subspace Method (Ho, 1998) <doi:10.1109/34.709601> , or both, and use Hastie and Tibshirani's (1990, ISBN:978-0412343902) generalized additive models (GAMs) as base classifiers. Once an ensemble classifier has been trained, it can be used for predictions on new data. A function for cross validation is also included.
This package provides the necessary functions to identify and extract a selection of already available barcode constructs (Cornils, K. et al. (2014) <doi:10.1093/nar/gku081>) and freely choosable barcode designs from next generation sequence (NGS) data. Furthermore, it offers the possibility to account for sequence errors, the calculation of barcode similarities and provides a variety of visualisation tools (Thielecke, L. et al. (2017) <doi:10.1038/srep43249>).